

UD SOLAR SPLASH TECHNICAL REPORT 2025

April 28, 2025

Faculty Advisors: David Perkins, Rydge Mulford Members: Kaitlin Niebauer, Michael Wolf, Ellie Opalek, Brian Piper, Sydney Guerin, Jack Mueller, Cory Howley, Jack Erick, Nick Yeoman, Lucas Cosentino, Courtney Provost, Erin Fox, Rachel Guinee, Brennan Geiger, Molly Eure, Elliot Stasek, Lucy Westbrook, Brock Smith

I. Executive Summary

UDSS placed 6th overall in the 2024 Solar Splash competition, with the main performance weakness being the boat's low maximum speed as a result of the design's small propeller. In addition, the team faced issues during the competition with unwanted motor shutoff, insecure charge controller wiring connections, and the propeller becoming disengaged from the shaft.. Based on these results, designing a custom outboard and propeller, improving steering design and driver positioning, repairing damage to the boat, and improving electronics system diagnostic capabilities were identified as main priorities for improvement.

The 2024 design achieved a maximum speed of 5.8 mph, significantly below the top performing sprint speed achieved by the University of Puerto Rico at Mayaguez, 24.9 mph (<u>Appendix F</u>). Therefore, designing an outboard and propeller capable of achieving speeds necessary to win the competition was the primary design focus. The outboard was designed to withstand the force generated by the propeller at 12 m/s with a 1:1 gear ratio at the bevel gears. The team investigated the use of a toroidal propeller to increase efficiency and thrust in the competition.

The 2024 design included a tiller-based steering system, with the driver positioned in the starboard aft deck corner. The driver's legs were positioned in the bilge beneath solar panels mounted 19 inches above the deck. This position made slalom steering difficult, driving for long periods uncomfortable, and egress difficult (though within Solar Splash regulations of five seconds). Therefore, the 2025 design moved the driver's position towards the bow, with steering controlled by a cable-based system. The team also focused on repairing water damage to the flotation foam and plywood of the hull, achieving a higher build quality and decreasing overall weight. This entailed removing all of the foam from the hull and replacing only the necessary foam.Multiple solar charge controllers, unevenly distributed among panels, potentially causing charging and discharging imbalances. These charge controllers were replaced with a single Victron Energy MPPT 150/35 charge controller that is capable of charging the system at 36 volts, and offering more advanced data monitoring capabilities. In addition, the team addressed unintended motor shutoff encountered during the 2024 competition by adjusting the peak motor speed within motor controller tuning. The team made no changes to battery and coolant system designs.

On-water testing will be conducted at Eastwood Metropark in Dayton, Ohio to determine hull drag, motor power consumption, and optimum propeller dimensions. The design improvements are expected to significantly improve competition performance in the 2025 Solar Splash competition.

II. Table of Contents

	0
I. Executive Summary	1
II. Table of Contents	2
III. Overall Project Objectives	3
IV. Solar System Design	4
A. Solar Panels	4
B. Battery Bank	6
V. Electrical System	7
A. Electrical System Block Diagram	7
VI. Power Electronics System	
VII. Hull Design	9
VIII. Drivetrain and Steering	12
A. Drivetrain	
B. Coolant System	
C. Steering	14
D. Propeller	15
IX. Data Acquisition and Communications	19
X. Project Management.	
XI. Conclusion and Recommendations	
References	25
XII. Appendix	
Appendix A. Battery Documentation	
1) UPS TLV12500F11 Safety Data Sheet	27
2) Mighty Max Battery ML18-12 Safety Data Sheet	44
Appendix B. Flotation Calculations	
Appendix C. Proof of Insurance	
Appendix D. Team Roster	
Appendix E. Sponsors	61
Appendix F. 2024 Solar Splash Performance Analysis	
Appendix G. Solar Panel Layout Design	63
Appendix H. Toroidal Propeller Data Collection	
Appendix I: Monitored Motor and Charge Controller Parameters	71

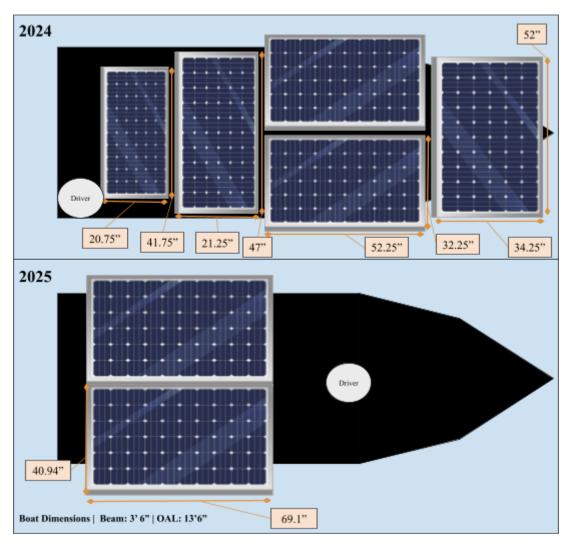
2024 University of Dayton Solar Splash Technical Report	
Appendix J: Funding Sources	

III. Overall Project Objectives

The University of Dayton Solar Splash team's goals for the 2024-2025 academic year are detailed in *Table 1*.

	Tuble 1: UDSS 2025 project objectives
System	Goal
Solar	Redesign the solar panel setup to be more space-efficient.
Electrical	Organize electronics wiring to be more space efficient on the hull.
Power Electronics	Address unwanted motor controller automatic shutoff by tuning motor controller software.
	Repair water damage to hull wood to maintain structural integrity.
Hull Design	Remove excess floatation foam to decrease hull weight.
Thui Design	Reposition the driver's seat from the starboard aft to be amidships towards the bow, in conjunction with the redesigned steering system to create a more ergonomic driving experience.
	Design and build a new outboard to replace the previously used Johnson Marine 4R76M outboard.
Drivetrain & Steering	Design and build a steering joint and steering cables to replace tiller-based steering.
	Replace coolant system motor with one of lower power that meets the required performance specifications, while conserving power and space.
Data Acquisition and	Implement a diagnostics system to monitor the motor, motor controller,
Communications	solar panels, and battery performance characteristics.

Table 1: UDSS 2025 project objectives

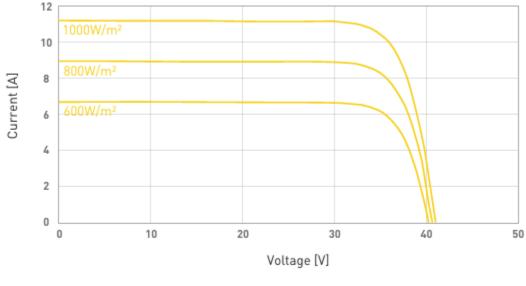

IV. Solar System Design

A. Solar Panels

Current Design: The 2023-2024 solar system design was composed of 5 panels in a 720W system (*Table 2*), secured to the boat using aluminum frames. All solar panels except the Renogy RNG-100D-SS (A) were donated to the team by a university research lab. These panels have a low power density, and took up the majority of the available deck space (*Figure 1*). As a result, panels were mounted on hinging aluminum frames to allow access to the electronics below. The panels left very little room for the driver, making boarding and egress difficult.

		2025			
Specification	Renogy RNG-100D-SS	Renogy RNG-100D	QSolar QSF	SANYO HIP-200BA3	Panasonic EVPV360PK
Qty	1	1	2	1	2
Dimensions (in)	20.75 x 41.75	21.25 x 47	32.75 x 52.25	34.25 x 52	69.1 x 40.94
Pmax (W)	100	100	160	200	360
Weight (lb)	14.3	21.0	30.9	30.9	43.0
Efficiency (%)	21	15.47	16.96	16.96	19.72
Vmp (V)	17.9	18.9	55.8	55.8	33.9
Imp (A)	5.72	5.29	3.59	3.59	10.62
Voc (V)	21.6	22.5	68.7	68.7	40.6
Isc (A)	6.24	5.75	3.83	3.83	11.26
Weight/Area (lb/in²)	0.0165	0.0210	0.0180	0.0180	0.0302
Watts/Area (W/in²)	0.115	0.100	0.094	0.094	0.202

Table 2: UDSS 2024 and 2025 solar panel characteristics



2024 University of Dayton Solar Splash Technical Report

Figure 1: Solar panel layout for the 2024 and 2025 UDSS boat

- Analysis of Design Concepts: The solar panel setup was redesigned by University of Dayton students for MEE-461 (See <u>Appendix G</u>). The design was projected to cost \$961.16 for solar panels, framing, and wiring. The design implementation cost 794.13. Two Panasonic EVPV 360W solar panels are wired in series, and are positioned behind the driver (*Figure 1*).
- 3) Design Testing and Evaluation: The team performed functionality testing on the Panasonic EVPV 360W panels by measuring voltage in direct sunlight. During future on-water testing, energy generated by solar panels in varying sunlight conditions will be measured, and compared to product specifications (*Figure 2*).

Reference data for model : EVPV360PK Cell temperature : 77°F (25°C)

Figure 2: Panasonic EVPV 360W voltage and current dependency on irradiance [1]

B. Battery Bank

- Current Design: The propulsion battery bank is composed of three UPS Battery Center TLV12500F11 12V 50 Ah batteries. The supplementary battery system is 12V Mighty Max Battery ML18-12 battery. Battery placement and wiring is shown in *Figure 3*. In future years, the team may investigate battery systems with a higher discharge rate and capacity to avoid lags in the battery power output and greater endurance, but no design changes were made to the system based on prior success. Battery system data sheets are shown in <u>Appendix A</u>.
- 2) Analysis of Design Concepts: N/A
- 3) Design Testing and Evaluation: N/A

V. Electrical System

A. Electrical System Block Diagram

1) *Current Design:* The detailed circuit diagram for the team's boat is shown in *Figure 3.* The craft's main battery bank powers the propulsion, control, and coolant systems. A secondary circuit with a separate battery powers the onboard bilge pump. Five onboard solar panels with a total output of 720W offer charging capabilities to extend overall runtime in sunny conditions.

Four SunSaver MPPT-15L charge controllers are used to convert the AC power generated by the panels to DC power for charging the main battery bank. While the design has many strengths, the four charge controllers used are unevenly distributed among the three propulsion system batteries, and 5 solar panels, which may negatively affect charging rate distribution.

 Analysis of Design Concepts: The prior design's charge controllers are replaced with a single SmartSolar MPPT 150I35 charge controller (*Table 3*). The single charge controller will prevent present and future issues with balancing distribution

HIGH_SIDE_IN / Throttle ANALOG_IN_1 Key Start SENSOR SUPPLY GND SENSOR SUPPLY DIGITAL IN 1 MOTOR TEMP + DIGITAL IN 2 Motor Switch MOTOR TEMP OR_SUPPLY_2 HIGH SIDE OUT ENCODER_1A ENCODER_1B OPEN DRAIN 1 Tem + U V EMCY stor Motor B-HH

Figure 3: Electronics diagram

between batteries and panels, even if future teams modify the amount further. Consolidation of the charge controllers into one will also simplify troubleshooting any future charge controller errors. The updated charge controller also provides battery voltage, panel wattage flexibility, and built-in data acquisition capabilities (addressed in IX. Data Acquisition and Communications).

Competiti		2024	2025
Charge Co	ontroller	SunSaver MPPT-15L	SmartSolar MPPT 150/35
Maximum Output Current		15 A	35 A
Cos	t	~\$300	\$184.45
Nominal Battery Voltage		12, 24 V	12, 24, 36, 48 V
	12	260 W	500 W
Nominal PV	24	520 W	1000 W
Power	36	N/A	1500 W
	48	N/A	2000 W
I _{max,}	sc	Not Listed	40 A
V _{PV, ma}	IX, OC	60 V	150 V
Peak Effi	ciency	97.5 %	98 %
Data Comm	unication	Modbus and SNMP over EMC Protocol	VE.Direct and Bluetooth via VictronConnect App
Dimens	sions	16.9 x 6.4 x 7.3 cm	130 x 186 x 70 mm
Weight		0.6kg	1.3kg

Table 3: SmartSolar MPPT 150/35 and SunSaver MPPT-15L technical specifications [2], [3]

3) Design Testing and Evaluation: N/A

VI. Power Electronics System

Current Design: The craft uses an Inmotion Technologies ACS GEN7 motor controller

 [4] and a DHX P20 brushless motor [5] for propulsion (Figure 4). The motor controller
 translates throttle commands from the skipper, and monitors an extensive list of motor
 parameters, including speed and temperature. The 2024 system did not display any
 diagnostic feedback to the skipper, however, any error codes were saved onboard the
 controller for post-run analysis. After implementation of the propulsion circuitry, the
 motor controller was tuned to ensure precise control of the motor's speed, position, and
 direction, in collaboration with an Inmotion Technologies representative. Despite tuning
 efforts, the team encountered persistent, unwanted motor controller auto shutoff in
 testing, and were not able to address the source prior to the 2024 competition.

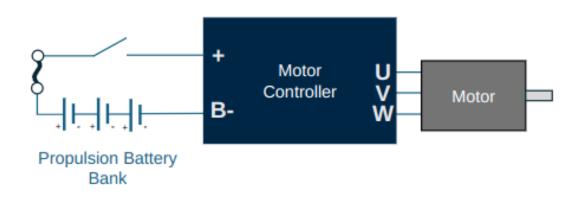
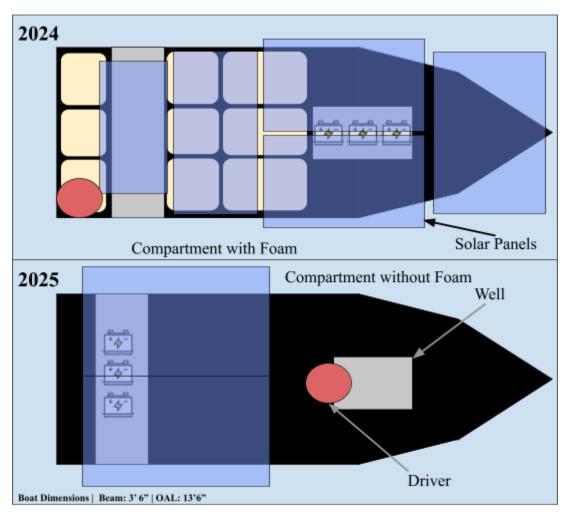


Figure 4: Motor and motor controller design

- Analysis of Design Concepts: The team worked with InMotion representatives to recreate motor shutoff error. From the error recreation, the peak motor speed was raised from 4500 RPM to 6500 RPM.
- 3) *Design Testing and Evaluation:* The team validated the effectiveness of the motor controller changes during testing.

VII. Hull Design


1) *Current Design:* Flats River Skiff 14 (FRS-14) "stitch and glue" build plans [6], sponsored by Salt Boatworks (*Figure 5*), were used to construct a hull that minimized drag through planing, could achieve a top speed of over 25 MPH, and had a wide beam that would allow for effective cornering during the slalom event. Construction of the hull began in Spring 2024, and concluded in Fall 2024. A mixture of 2-pound and 5-pound density foam was used due to material availability. After completing the original build, the team opened up several of the bulkheads for driver seating, battery storage, and bilge seating. In addition, framing was added on the flooring to attach panel standoffs, charger controllers, driver seat, motor control unit, and control panel.

While the hull was functional in the 2024 competition, the design had several drawbacks. Lack of team experience in stitch and glue build and composite manufacturing lead to uneven and nonsymmetric surfaces on the hull. In addition, the boat contained more foam than was required to prevent the boat from taking on water, and was extremely heavy. Both of these were predicted to negatively impact speed and efficiency. Finally, improper epoxy sealing techniques allowed water damage to the plywood to occur.

Figure 5: Salt Boatworks FRS-14 overall layout, shown on the Salt Boatwork website [7]

Analysis of Design Concepts: In order to address excess foam and water damage concerns, all foam was removed from the boat, and 2 lb density expanding polyurethane foam repoured in all bulkheads except in two central exterior compartments (*Figure 6*). Foam-containing bulkheads were chosen based on required mass of foam (see <u>Appendix</u> <u>B</u>) and required deck sturdiness based on mass distribution. Water-damaged wood was removed, and reinforced with new wood, then fiber glassed and epoxied. A new plywood deck was installed , fiberglassed, and sanded. In addition, driver placement was moved towards the boat bow to allow for more even weight distribution. The team kept the two wells used in the 2024 competition, but switched which ones were being used for battery storage and as a foot well for the 2025 competition (*Figure 6*).

2024 University of Dayton Solar Splash Technical Report

Figure 6: Hull foam and deck 2024 and 2025 designs

3) Design Testing and Evaluation: Hull modifications removed an estimated 50 lbs from the hull, allowing for decreased drag and greater ease of transportation. Hull drag and weight calculations may be found in <u>Appendix B. Flotation Calculations</u>. During on-water testing, drag will be experimentally determined using methods outlined in section <u>D. Propeller</u>.

VIII. Drivetrain and Steering

A. Drivetrain

Current Design: The 2024 drive train was created from an adapted Johnson Marine 4R76M. This outboard motor from 1976 originally came with a two-piston, two-stroke internal combustion engine that was rated for 4 horsepower. The team removed all combustion engine parts from the outboard, to allow for the integration of a *DHX* Peregrine P20 Motor (*Table 4*). This motor can provide a peak output of 25 horsepower and 30 ft*lb of torque, and is controlled with an *inmotion* ACS48M55 Gen 7. The P20's nominal RPM of 4400 matches the wide-open throttle range of the original Johnson outboard engine. The outboard had a 25:12 gear ratio into the propeller, giving an output speed of 2200 RPM [8], [9].

Table 4: Peregrine P20 motor characteristic											
Speed (RPM)	Nominal	4400									
Speed (Kr M)	Peak	6500									
Torque (N-m)	Nominal	25									
Torque (IN-III)	Peak	40									
Dowor (LW)	Nominal	11.5									
Power (kW)	Peak	18.4									
Cummont (A)	Nominal	250									
Current (A)	Peak	425									
Efficiency	Peak	95									

Table 4: Peregrine P20 motor characteristics

2) *Analysis of Design Concepts:* The custom-designed outboard (*Figure 7, Table 5*) was CNC manufactured by the team. The team machined the shaft down to a stock size for the spline, but did not have the capabilities to match the spline to the kit we purchased, so the shaft was sent to Dayton Gear to cut the spline and complete the prop shaft.

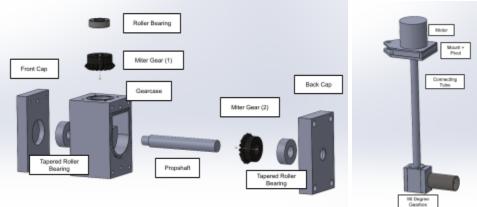


Figure 7: Custom outboard design CAD

The aluminum gearbox contains 2 KHK-SM3-16 gears and was machined in two sections connected by screws and locating pins (*Figure 7*). The O-ring and oil seal in the gearbox ensure it is water tight. The prop plate holds the oil seal and back bearing, while the back plate holds the other bearing that transmits the thrust from the prop to the rest of the boat. The outboard design is modular, which will allow for future design modifications as needed. The 1:1 gear ratio under the water makes designing change gears outside of the water significantly easier should the team decide that is necessary in future years.

Tuble 5. 2024 and 2025 Outbourd Characteristics											
	2024	2025									
	Johnson Marine 4R76M	UDSS Designed Outboard									
Material	Steel	CNC Aluminum									
Gear Ratio	25:12	1:1									
Maximum Rotational Speed	3120	6500									
	Limited to standard service	Fully modular to allow for									
Modularity	Limited to standard service disassembly	partial development in future									
	uisassembly	years									

Table 5:	2024 and	2025	Outboard	Characteristics
----------	----------	------	-----------------	------------------------

3) Design Testing and Evaluation: N/A

B. Coolant System

1) *Current Design:* In this design, shown in Figure 8, coolant is transferred from the reservoir into the pump, then pushed through the motor, radiator, and then finally back into the reservoir. This system runs the electric pump and radiator concurrently off of one switch. The design of this system was heavily influenced by the suggestions of DHX representatives, who recommended a JEGS 555-60346 transmission cooler, and a coolant flow rate between 15.5 and 26 L/min. The recommended JEGS transmission cooler assembly was selected for the radiator and fan cooler. The Wasserman 4WDP5-55-12V pump has a flow rate of 18.9 L/min and is designed to be used in RVs and other systems with limited power.

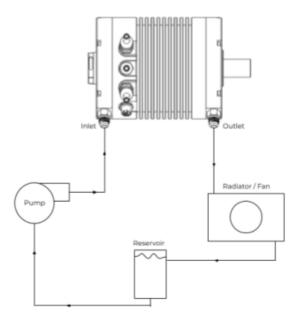


Figure 8: Coolant System layout

- 2) Analysis of Design Concepts: N/A
- 3) Design Testing and Evaluation: N/A

C. Steering

1) *Current Design:* The 2024 steering system used the integrated tiller from the outboard's original setup. The tiller was modified to stand at a slightly higher angle to avoid the radiator. Due to time constraints and concerns about commonly encountered failures in cable-controlled systems, the team did not pursue a more technical steering system for the 2024 competition.

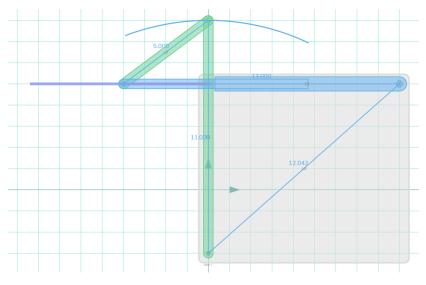


Figure 9: Cable-based steering system dimensions

- 2) Analysis of Design Concepts: With the driver's position being moved towards the bow by the hull team (see <u>VII. Hull Design</u>), the team implemented a new cable-based steering system. Using a steering wheel for the control point, the VEVOR Boat Steering System was used to translate steering wheel motion into outboard movement. The cable steering system uses a cog to push/pull the cable, allowing the outboard 35 degrees of rotation from center in either direction (*Figure 9*).
- 3) Design Testing and Evaluation: N/A

D. Propeller

1) *Current Design:* The team used the original 7.5x6LH propeller from the converted Johnson 4R76M outboard. The propeller was undersized for the converted drivetrain motor and was operated at high rotational speed, leading to low propeller efficiency and suboptimal thrust generated.

2) Analysis of Design Concepts: The new design features a new toroidal propeller, designed and tested by the team, as well as commercially available propellers from Turning Point (Table 6). The selection of Turning Point for the propellers allows the team to reuse the same propellers with multiple different hubs and their associated drive splines, using the MasterGuard #11 hub kit, which will provide dependable driving of the propeller up to 75 horsepower (Figure 10).

Figure 10: Turning point MasterGuard #11 hub kit

These hubs allow us to easily attach the in-house designed toroidal propellers, which are able to achieve greater efficiency and thrust while lowering cavitation compared to conventional propellers [10]. The characterization of toroidal propellers requires the use of additional dimensions, described in *Figure 11*, including vertical angle (α) and lateral angle (φ).

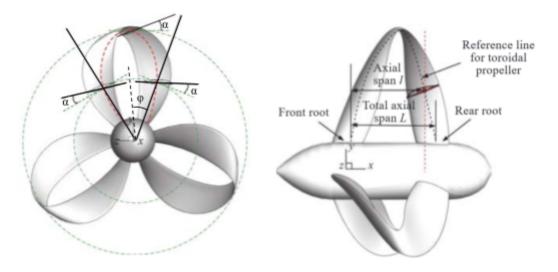


Figure 11: Common dimensions used in toroidal propeller design, modified from [10]

Python code was used to generate 3D points for desired propellers, using equations from [10].

Propeller	Hustler 2130 1110	Hustler 2130 1510	Sprint Toroidal Propeller	Endurance Toroidal Propeller
Diameter	10.875 in	10.13 in	TBD	TBD
Pitch	11 in	15 in	55 deg	48.5 deg
Hub Diameter	3.25 in	3.25 in	55 mm	55 mm
Axial Span (L)	2.75 in	3.35 in	0.33D	0.13D

Table 6: Commercial and designed propeller characteristics

Commercial propeller analysis will be performed using Matlab OpenProp [11] to determine power number, thrust number, and efficiency of commercial propellers for use in on-water testing.

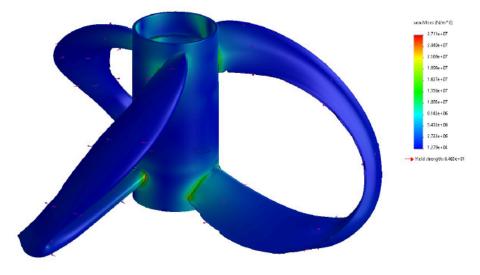


Figure 12: FEA static torque analysis stress results for 10" diameter sprint propeller

SolidWorks finite element analysis (FEA) was used to evaluate the suitability of ABS and PETG for toroidal propeller 3D printing at 40 N-m of applied torque (*Figure 12*). FEA results consistently predicted propeller permanent deformation under maximum torque loading. Due to the variability in material properties of FDM printing [12] propeller strength will be validated using destructive torque tests.

 Design Testing and Evaluation: Propellers will be verified to withstand torque up to 40 N-m (peak motor torque) within the elastic deformation region, to ensure they do not break or deform during use (*Figure 13*).

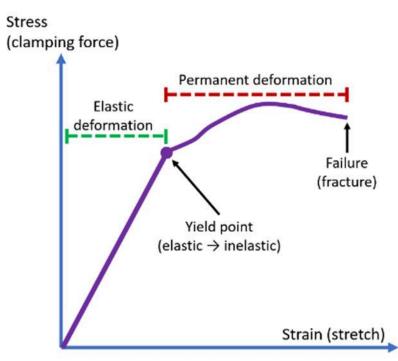


Figure 13: Labelled example of torque-to-failure destructive test results to be performed on 3D printed toroidal propellers [13].

Propeller performance will be quantified through power number (N_P), torque number (N_Q), thrust number (N_τ), and efficiency (η) (*Table 7*). Propeller torque (Q), power delivered (P), and motor rotational speed (n) are measured directly by the motor controller (<u>Appendix H</u>) and reported through the data acquisition system (<u>IX. Data</u> <u>Acquisition</u>), allowing for direct calculation of N_P , N_Q , and J.

Parameter	eter Equation Description							
Power Number	$N_{p} = \frac{P}{n^{3} D_{i}^{5} \rho}$	Ratio of power produced to fluid density, impeller speed and size.						
Torque Number	$N_Q = \frac{Q}{n^2 D_i^4 \rho}$	Ratio of torque produced to fluid density, impeller speed and size.						
Thrust Number	$N_{\tau} = \frac{\tau}{n^2 D_i^4 \rho}$	Ratio of thrust produced to fluid density, impeller speed and size.						
Efficiency (%)	$\eta = \frac{N_T J}{2 \pi N_T}$	Ratio of thrust horsepower to delivered horsepower.						
Advance Coefficient	$\mathbf{J} = \frac{v}{n D_i}$	Distance a propeller travels over the distance the propeller rotates.						

Table 7: Propeller performance characteristics

Propeller thrust generated is not captured in the data acquisition system, and will therefore be calculated for toroidal propellers using hull drag. At constant speed, the thrust delivered by the propeller is equal to the form and friction resistance of the hull:

$$T = N_{\tau} n^2 D_a^2 \rho = \frac{1}{2} \rho v^2 A C_d$$

Thrust coefficients for commercial marine propellers will be estimated using Matlab OpenProp, and will be used to determine the drag coefficient (C_d) at varying speeds. Toroidal propeller N_{τ} will be calculated by operating the hull at the same range of speeds, and using the previously determined C_d to calculate N_{τ} .

IX. Data Acquisition and Communications

Motor parameters (Appendix H) are monitored through the ACS GEN7 motor controller, and passed to Raspberry Pi 1, running Raspberry Pi OS. Battery and solar array qualities are monitored (Appendix H) through the Victron Smart Solar charge controller, and data passed to Raspberry Pi 2, running Venus OS. Both Raspberry Pi's are powered by the primary propulsion system batteries, and communicate with UDSS members on shore through a Remuar Wifi HaLow ethernet bridge, which broadcasts a WiFi signal to a bridge and router onshore (Figure 14).

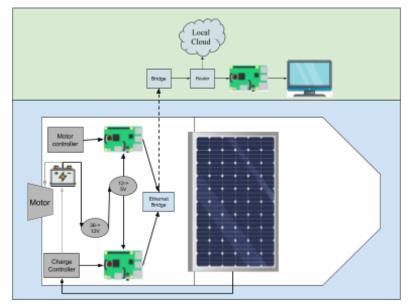
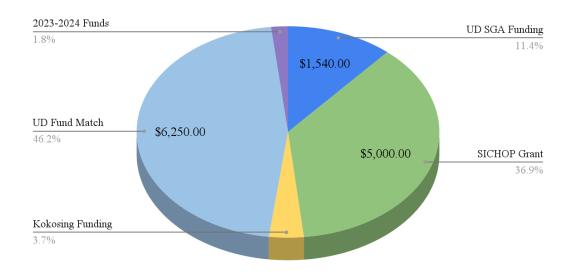


Figure 14: UDSS data acquisition systems


Data processing is performed on Raspberry Pi 3, and displayed to a primary monitor onshore, though any UDSS member connected to the WiFi may view the data in the local cloud. The skipper and UDSS data monitoring team communicate through Cobra 50WXST radios as needed.

X. Project Management

UDSS is divided into hull, motor, electronics, and business subteams, with an associated student lead (see <u>Appendix D. Team Roster</u>) facilitating subteam meetings and delegating action items. The team president oversees all subteams, communicates with Solar Splash and the

university, and facilitates full-team meetings. The treasurer leads budgeting, coordinates all purchases, and applies for university funding. The team holds biweekly full-team and weekly subteam meetings.

Fund availability has historically been a large hurdle faced by the team. The team has had limited success with monetary sponsorships from companies, but consistently receives funding targeted towards student clubs from University of Dayton organizations. The team received funding from the Student-Innovative-Creative-Hands-on Project (SICHOP) grant, offered by the Ohio Space Grant Consortium (OSGC). The team's largest source of funding is the UD School of Engineering (SoE) fund match program for eligible donations to engineering competition clubs (*Figure 15*). UDSS received fund matching from the SICHOP grant, Kokosing Sponsorship, and funding from the 2023-2024 school year. For the 2024-2025 school year, the team's had \$13,533.57 in rollover funding and sponsorships.

Figure 15: 2024-2025 academic year fundraising amounts and sources

The team anticipated a budget of \$7,748.15 for the 2024-2025 school year, and were remarkably close, at an actual total of \$7,458.03, despite overspending in the hull and data acquisition categories, and underspending in the drivetrain & steering (*Figure 16*).

Figure 16: Predicted and actual budget for the 2024-2025 academic year

Project management was identified as a top priority for the team, to allow for adequate time for testing (*Figure 17*). This year, the team met most of their timeline objectives. Specifically, the design timelines were maintained with manufacturing and testing falling short this year. These manufacturing and testing delays come as a result of a multitude of causes, however the most common cause was the delayed arrival of funding this spring. Another major hurdle for the team was a three week period where no progress was made on hull repairs. This came from team members being off for spring break and two weeks of poor weather which delayed the completion of hull repairs, and as a result delayed implementation of other systems onto the hull in addition to delaying the testing schedule.

			Fall 2024											Nov 24 Jan 12 Jan 12 Jan 26 Feb 2 Feb 2 Feb 26 Feb 23 Mar 26 Mar 9 April 13 April 27 April 27 April 27																	
Team	Subteam	m Goals	Aug 25	Sept 1	Sept 8	Sept 15	Sept 22	Sept 29	Oct 6	Oct 13	Oct 20	Oct 2/ Nov 3	Nov 10	Nov 17	Nov 24	Dec 1	Jan 12	Jan 19	Jan 26	Feb 2	Feb J6	Feb 23	Mar 2	Mar 9	Mar 16	Mar 23	Mar 30	April 6	April 20	April 27	May 4
		Analyzing Report and Choosing Panels																													
Solar S	System	Making Panel Framing																													
		Wiring Harness																													
		Select new charge controller																													
Electrica	l System	Wiring Harness																													
		Install new charge controller																													
Power El	actuanias	Testing Motor error and timing																													
Power EI	lectronics	Updated Cutoff for over speed																													
		Remove Foam From Boat																													
Hı	ull	Replace foam																													
		Replace and fiberglass deck																													
		Outboard Design																													
	Outboard	Outboard CAM/Design for Manufacturing																													
	Outboard	Manufacturing																													
		Assembly																													
Drivetrain		Propeller Design																							*						
& Steering	Propeller	Propeller Test Printing and FEA, redesign																													
		Propeller final prints																													
		Select commercial steering system																													
	Steering	Design steering system																													
		Build																													
		Purchase equipment																									*				
Data Aq	nuisition	Identity parameters to monitor on motor controller															*														
Data Aq	laisinon	Connect Raspberry Pi to Solar Charger																										*	4		
		Connect Raspberry Pi to motor controller																										3			

Figure 17: Project timeline gantt chart

XI. Conclusion and Recommendations

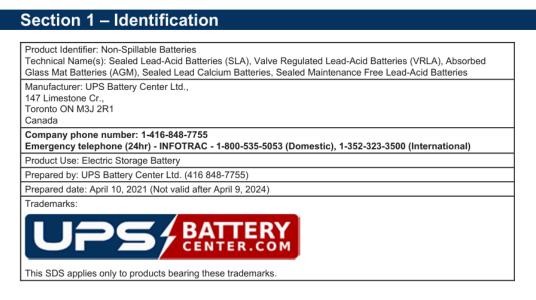
In the future, the team plans to design and build a new carbon-fiber hull, improve data acquisition, continue to develop better propellers, and add change gears to offer gearing changes to better suit each propeller. Failure points at competition and at future testing will also be addressed. The team hopes to improve upon sub-team organization and time management, and increase planning time for projects. In addition, the team struggled somewhat with new member retention, especially underclassmen who lacked experience in design work and were hesitant to engage as a result. In future years, the team hopes to incorporate teaching younger members through collaborative projects and meetings to address this issue. Finally, progress during the Fall semester was hindered due to a lack of available funding, which the team hopes to avoid in future years, and has budgeted to achieve next year. Teamwork and collaboration enabled much of the successes the team has had this year. The addition of a data acquisition system, new panels and chargers, a custom outboard, and multiple propellers are major technical successes that will positive impact the team's performance throughout this competition and into the future. An evaluation of individual team goals is detailed in *Table 8*.

System	Objective	Evaluation of Objective		
Solar	Redesign the solar panel array to be more space-efficient.	The array was made much more efficient through a reduction in components.		
Electrical	Organize electronics wiring to be more space-efficient on the hull.	Organization and wire management was successfully improved, additions to circuit were implemented seamlessly, without impacting the overall circuit.		
Power Electronics	Address unwanted motor controller automatic shutoff by tuning motor controller software.	Motor controller shutoff issue addressed. Though it may have been addressed through 1:1 gearing on custom outboard and larger propeller diameter, the team gained knowledge useful for addressing future issues.		
	Repair water damage to hull wood to maintain structural integrity.	Damaged wood was successfully removed and the team gained knowledge about proper epoxy application.		
Hull Design	Remove excess floatation foam to decrease hull weight.	Foam removed and replaced with correct weight foam and limited the overall weight, though the boat is still quite heavy compared to other teams.		
	Reposition the driver's seat from the starboard aft to be amidships towards the bow.	Steering design was improved to allow for height adjustments for the steering wheel and seat.		
Drivetrain & Steering	Design and build a new outboard to replace the previously used Johnson Marine 4R76M engine outboard.	Designed outboard meets needs and design goals, and is a significant improvement from prior Johnson outboard. However, the design finished several weeks later than intended.		
	Design and build a steering joint and steering wires to replace tiller-based steering.	The steering wheel should greatly improve boat control, with the added speed of the new outboard.		
Data Acquisition and Communications	Implement a diagnostics system to monitor the motor, motor controller, solar panels, and battery performance characteristics.	Remote data acquisition is a significant advance from previous years, but the team has done little work so far to enable automatic data processing.		

Table 8: Evalu	uation of 2025	5 project ol	bjectives
----------------	----------------	--------------	-----------

References

- [1] "ds_evpv370pk_360pk.pdf." Accessed: Apr. 28, 2025. [Online]. Available: https://ftp.panasonic.com/solar/datasheet/ds_evpv370pk_360pk.pdf
- [2] "MPPT solar charger manual." Accessed: Apr. 28, 2025. [Online]. Available: https://www.victronenergy.com/media/pg/Manual_SmartSolar_MPPT_150-35__150-45/en/i ndex-en.html
- [3] "SunSaver MPPT," Morningstar Corporation. Accessed: Apr. 28, 2025. [Online]. Available: https://www.morningstarcorp.com/products/sunsaver-mppt/
- [4] "ACS Inverters." Accessed: Apr. 28, 2025. [Online]. Available: https://evs-inmotion.com/en/acs-gen7-inverters
- [5] "MOTORS," DHXmachines. Accessed: Apr. 28, 2025. [Online]. Available: https://www.dhxelectricmachines.com/motors
- [6] Salt Boatworks, How to Stitch and Glue a Boat How to Build a Boat Part 3, (Aug. 01, 2018). Accessed: Apr. 28, 2025. [Online Video]. Available: https://www.youtube.com/watch?app=desktop&v=KtKtXfVrzNs
- [7] "Flats River Skiff 14 Micro skiff Plans," Salt Boatworks. Accessed: Apr. 28, 2025. [Online]. Available: https://saltboatworks.com/product/flats-river-skiff-14/
- [8] "1976 Johnson 4HP 7603 Outboard Service Manual." Accessed: Apr. 28, 2025. [Online]. Available: https://watercraftmanuals.com/outboard/johnson/johnson-7603.htm
- [9] "GEARCASE-STANDARD DRIVE 1976 Outboard 4 4R76M | Crowley Marine." Accessed: Apr. 28, 2025. [Online]. Available: https://www.crowleymarine.com/johnson/oem-parts/outboard/1976/4r76m/gearcase-standard -drive
- [10] Y. Liyu, W. Chao, S. Cong, and G. Chunyu, "Mathematical expression method for geometric shape of toroidal propeller," 2024.
- [11] L. K. P. D'Epagnier, H.-L. Chung, M. J. Stanway, and R. W. Kimball, "An Open Source Parametric Propeller Design Tool," in *OCEANS 2007*, Sep. 2007, pp. 1–8. doi: 10.1109/OCEANS.2007.4449400.
- [12] K. S. Patel, D. B. Shah, S. J. Joshi, F. K. Aldawood, and M. Kchaou, "Effect of process parameters on the mechanical performance of FDM printed carbon fiber reinforced PETG," *J. Mater. Res. Technol.*, vol. 30, pp. 8006–8018, May 2024, doi: 10.1016/j.jmrt.2024.05.184.
- [13] "Force Testing | Stable Micro Systems." Accessed: Apr. 28, 2025. [Online]. Available: https://www.stablemicrosystems.com/force-testing.html


XII. Appendix

Appendix A. Battery Documentation

Three *UPS* TLV12500F11 12V batteries for propulsion, and one *Mighty Max Battery* ML18-12 12V battery for the supplemental battery circuit. The safety data sheets for both are appended below.

1) UPS TLV12500F11 Safety Data Sheet

SAFETY DATA SHEET

Section 2 – Hazards Identification

2.1 Overview

This product is a battery with the GHS Label: Valve Regulated Lead Acid Battery, Non-Spillable.

Under normal conditions, this product is sealed and does not leak or vent gasses or hazardous substances. There is no contact with the internal components of the battery or the chemical hazards under normal product use and handling. In the absence of an accident or incident, the classifications below are not likely to apply. Nevertheless, this Safety Data Sheet (SDS) contains valuable information critical to the safe handling and proper use of this product. This SDS should be retained and made available to employees and other users of this product.

The information in the classifications below in Section 2.2 and Section 2.3 apply to contact with discharged sulfuric battery electrolyte, which could occur during an accident or incident. This could occur under severe over- charge conditions where there may be venting of sulfuric acid gas and could also occur when hazards are presented during reclamation (recycling).

2.2 Classification of substance

Hazard Category		Hazard Statements		
Health Hazards				

Acute Toxicity – Oral	Category 4	H302
		Harmful if swallowed
Acute Toxicity - Inhalation	Category 4	H332
		Harmful if inhaled
Skin Corrosion / Irritation	Category 1A	H314
		Causes severe skin burns and eye damage
Reproductive Toxicity	Category 1A	H360Df
		May damage the unborn child. Suspected of damaging fertility
Specific Target Organ Toxicity (Repeated	Category 1	H372
Exposure)		Causes damage to organs (respiratory system) through prolonged or repeated exposure
Specific Target Organ Toxicity (Repeated	Category 2	H373
Exposure)		May cause damage to organs through prolonged or repeated exposure
Serious Eye Damage / Eye Irritation	Category 1	H318
		Causes serious eye damage
Specific Target Organ Toxicity (Single Exposure)	Category 3	H335
0		May cause respiratory irritation
Specific Target Organ Toxicity (Single Exposure)	Category 1	H370
		Causes damage to organs (respiratory system)
Environmental Hazards		
Hazardous to the Aquatic Environment - Acute	Category 1	H400
		Very toxic to aquatic life
Hazardous to the Aquatic Environment - Chronic	Category 1	H401
		Very toxic to aquatic life with long lasting effects
Physical Hazards – not class	ified	

Signal Word: DANGER

Placards are only required for transportation of spent or damaged batteries destined for reclamation (recycling).

2.3 Canada

Classification of substance

D1A	Class D - Poisonous and Infectious Material, Division 1: Materials causing immediate and serious toxic effects, Subdivision A: Very toxic material
D2A	Class D- Poisonous and Infectious Material, Division 2: Materials causing other toxic effects, Subdivision A: Very toxic material
E	Class E – Corrosive Material

Label elements

Signal Word: DANGER

Other hazards

In Canada, sealed lead-acid batteries are considered as hazardous according to the Workplace Hazardous Materials Information System (WHMIS).

2.4 Precautionary Statements

Do not handle until all safety precautions have been read and understood
Obtain special instructions before use
Use personal protective equipment as required
Wash face, hands and any exposed skin thoroughly after handling

	Do not breathe dust/fume/gas/mist/vapors/spray
	Use only outdoors or in a properly ventilated area
	Do not eat, drink or smoke when using this product
	Avoid release into the environment
	Keep out of reach of children
	Do not attempt to remove cover
	Avoid heat, sparks and open flame while charging batteries
	Avoid contact with internal acid
	Always be aware of the risk of fire, explosion or burns
	Do not solder a battery directly
	Keep away from fire or open flame
	Do not disassemble or modify the battery
	Do not short circuit the positive and negative terminals with any other metals
Response	Immediately call a poison center or doctor/physician
	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center or doctor/physician
	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse
	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a poison center or doctor/physician if you feel unwell
	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. Rinse mouth. Do not induce vomiting
Storage	Store locked up
Disposal	Dispose of contents/container to an approved waste disposal plant in accordance with applicable regulations
, ,	

2.5 OSHA Regulatory Status

This product is considered hazardous by the OSHA HCS (Hazard Communication Standard), WHMIS (Work- place Hazardous Materials Information System), IOSH (Institution of Occupational Safety and Health), ISO (International Organization for Standardization) and by EU Directive (67/548/EEC) and a SDS is required for this product considering that when used as recommended or intended, or under ordinary conditions, it may present a health and safety exposure or other hazard.

Section 3 – Composition / Information on Ingredients

Under normal use and handling there is no contact with internal components of battery. Under normal use and handling batteries do not emit regulated or hazardous substances. After contact with terminals, wash hands before eating, drinking, smoking, applying cosmetics or handling contact lenses. If battery is damaged all listed precautions should be taken to prevent exposure.

Components	Chemical Abstract Service (CAS) Number	Enzyme Commission Number (ECN)	% Weight	OSHA Regulatory Status
Lead (Pb)	7439-92-1	231-100-4	about 50%	Hazardous
Lead Dioxide (PbO2)	1309-60-0	215-174-5	about 10%	Hazardous
Lead Sulfate (PbSO4)	7446-14-2	231-198-9	about 10%	Hazardous
Calcium (Ca)	7440-70-2	231-179-5	about 0.05%	Hazardous
Sulfuric Acid (H2SO4)	7664-93-9	231-639-5	about 20%	Hazardous
Fiberglass Separator	65997-17-3	266-046-0	about 5%	Hazardous
Acrylonitrile Butadiene Styrene Case	9003-56-9	618-371-8	about 5%	Non- Hazardous
Tin (Sn)	7440-31-5	231-141-8	0 - 0.25%	Non- Hazardous
Arsenic (As)	7440-38-2	231-148-6	about 0.2%	Hazardous

Ingredients reflect components of a finished product

Section 4 – First Aid Measures

Non-spillable batteries are sealed and do not leak or vent gasses under normal conditions. Venting of sulfuric acid gas and hydrogen can occur under severe overcharge conditions. During lead reclaim operations, or if battery is ruptured or damaged, exposure to sulfuric acid electrolyte and lead can occur.

- Eye Contact: Sulfuric acid electrolyte. Immediately flush with water for 20 minutes, lifting the upper and lower lids. Get immediate medical attention.
- Skin Contact: Sulfuric acid electrolyte. Immediately flush with water for 20 minutes. Remove contaminated clothing and launder before reuse. Get medical attention if irritation persists, if area is large or if blisters form.
- Inhalation: Sulfuric acid fumes. If irritation develops, remove victim to fresh air and get medical attention. Give CPR (Cardiopulmonary Resuscitation) if breathing has stopped.
- **Ingestion:** Sulfuric acid electrolyte. Do not induce vomiting. Do not give anything by mouth to an unconscious or convulsing person. Flush out mouth with water. Give water or milk to drink followed by milk of magnesia or vegetable oil. Get immediate medical attention.
- Lead (Pb): The toxic effects of Lead are accumulative and slow to appear. If symptoms appear see your physician.

After any contact with internal components of the battery, wash hands before eating, drinking, smoking, applying cosmetics or handling contact lenses.

Section 5 – Fire Fighting Measures

5.1 Flammable Properties

Sealed batteries can emit Hydrogen, vaporized sulfuric acid or highly toxic arsine gas in a fire. Sealed batteries can emit Hydrogen while being over-charged. (Float Voltage in excess of 2.40 Volts Per Cell at 25° C / 77° F).

5.2 Extinguishing Media

Provided that batteries are not part of an electrical circuit, use any media appropriate for surrounding fire (including water, dry chemical, foam, CO2, Halon).

If batteries are part of an electrical circuit, isolate them from power source at the circuit breaker before using water to extinguish fire. If this cannot be done immediately, then water must not be used as an extinguishing media.

5.3 Protection of Firefighters

Ventilate the area well. National Institute for Occupational Safety & Health (NIOSH) approved Self-Contained Breathing Apparatus (SCBA) and full fire-fighting turn out gear is recommended.

Unusual Fire and Explosion Hazards: Keep lighted cigarettes, sparks and flames away. Explosion can result from improper charging and ignition of resulting gases. Explosion can result if charged in gas tight container. Hydrogen can burn with almost an invisible flame of low thermal radia. People have unknowingly walked into hydrogen flames. Hydrogen is easily ignited.

Section 6 – Accidental Release Measures

Steps to be taken if battery vents hydrogen or sulfuric acid gas: Sealed batteries can emit Hydrogen while being over-charged. (Float Voltage in excess of 2.40 Volts Per Cell at 25° C / 77° F). Keep well ventilated and away from flame, spark or heat. If concentrations of sulfuric acid mist are known to exceed Permissible Exposure Limit (PEL), use NIOSH or Mine Safety and Health Administration (MSHA) approved respiratory protection.

Steps to be taken if battery is broken: Avoid contact with sulfuric acid electrolyte. Each non-spillable battery contains only enough sulfuric acid to saturate fiberglass separators, so a large spill is not likely to occur. If leak occurs, dilute with water, neutralize with sodium bicarbonate (baking soda), sodium carbon (soda ash) or calcium oxide (lime) until fizzing stops. Hydrogen gas may be given off during neutralization, provide adequate ventilation. The pH should be neutral at 6-8. When neutralized the spill is non-hazardous and can be flushed down the sewer. Do not allow un-neutralized acid to enter the sewage system. Broken battery contains lead and should be treated as hazardous waste. Place broken battery in a heavy gauge plastic bag or other non-metallic container and follow disposal procedure as per Section 13 below.

Section 7 – Handling and Storage

Store indoors in a cool, dry, well-ventilated area away from combustibles and activities that may create flame, spark or heat. Do not store in sealed, unventilated areas. Do not use organic solvents on the batteries. Do not allow metallic tools to short across terminals, as spark may occur. Do not wear metallic jewelry when working on small batteries as dangerous short circuit and severe burns may occur. There is risk of electric shock from strings of series-connected batteries even when not hooked up to charger. Sealed batteries can emit Hydrogen while being over-charged. Do not allow float voltage to exceed 2.40 Volts Per Cell at 25° C / 77° F. Do not remove vent covers.

Section 8 – Exposure Controls & Personal Protection

8.1 Engineering Controls

Charge in areas with adequate ventilation. General dilution ventilation is acceptable.

8.2 Personal protective equipment (PPE)

a) Under normal conditions no protection is required.

b) If battery is ruptured follow precautions in Section 6 and use the following protective equipment:

8.2.1 Eye/face Protection:

Safety glasses or goggles recommended to handle battery if case is damaged.

8.2.2 Skin Protection:

Use acid-resistant gloves to handle battery if case is damaged. An acid-resistant apron is also recommended for large clean-up operations.

8.2.3 Respiratory Protection:

When concentrations of sulfuric acid mist are known to exceed PEL, use NIOSH or MSHA approved respiratory protection.

8.2.4 General Hygiene Conditions:

After any contact with internal components of the battery, wash hands before eating, drinking, smoking, applying cosmetics or handling contact lenses. Discard lead contaminated clothing in a manner that limits further exposure. After contact with terminals, wash hands before eating, drinking, smoking, applying cosmetics or handling contact lenses.

8.3 Exposure Guidelines & Limits

Under normal conditions there is no risk of exposure other than to lead (Pb) through contact with the terminals. If case is damaged, or during reclaim operations, the following table should be observed.

Components	CAS Number	ACGI H* TLV	OSHA PEL	NIOSH REL	NIOSH IDLH	Quebec PEV	Ontario OEL
Lead (Pb)	7439-92-1	0.05 mg/m ³	0.05 mg/m ³	0.05 mg/m ³	100 mg/m ³	0.05 mg/m ³	0.05 mg/m ³
Lead Dioxide (PbO2)	1309-60-0	0.05 mg/m ³	0.05 mg/m ³	0.1 mg/m ³	100 mg/m ³	0.05 mg/m ³	0.05 mg/m ³
Lead Sulfate (PBSO4)	7446-14-2	0.05 mg/m ³	0.05 mg/m ³	0.1 mg/m ³	100 mg/m ³	0.05 mg/m ³	0.05 mg/m ³
Calcium Ca)	7440-70-2	None Listed	None Listed	None Listed	None Listed	None Listed	None Listed
Sulfuric Acid (H2SO4)	7664-93-9	0.2 mg/m ³	1 mg/m ³	1 mg/m ³	15 mg/m ³	1 mg/m ³	0.2 mg/m ³
Fiberglass Separator	Not Listed	None Listed	15 mg/m ³	5 mg/m ³	None Listed	None Listed	None Listed
Acrylonitrile Butadiene Styrene	9003-56-9	Not Applicabl e	Not Applica ble	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Tin (Sn)	7440-31-5	2 mg/m ³	2 mg/m ³	2 mg/m ³	100 mg/m ³	2 mg/m ³	2 mg/m ³
Arsenic (As)	7440-38-2	0.01 mg/m ³	0.01 mg/m ³	5 mg/m ³	3 ppm	0.1 mg/m ³	0.01 mg/m ³

* Association Advancing Occupational and Environmental Health

Section 9 – Physical & Chemical Properties

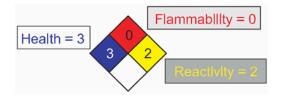
Flammable Properties

Battery (Finished Product)

Flash Point: Not Applicable		Autoignition Temperature: Not Applicable	
Flammable Limits: LFL: Not Applicable		Flammability Classification:	
UFL: Not Applicable		Non-Flammable Solid (Per 29 CFR 1910.1200)	

Hydrogen (Emission)

Flash Point: Gas @ normal temperature		Autoignition Temperature: 500° C (932° F)	
Flammable Limits: LFL: 4.1%		Flammability Classification:	
UFL: 74.2%		Flammable Gas (Per 29 CFR 1910.1200)	


Hazard Ratings

NFPA Hazard Rating

(for Sulfuric Acid)

Rating Hazard Rating Key:

Flammability (Red) = 0 Health (Blue) = 3 Reactivity (Yellow) = 2

0 = minimal 1 = slight 2 = moderate 3 = serious 4 = severe

Component Properties

Components	CAS Number	ACGIH * TLV	OSHA PEL	NIOSH REL	NIOSH IDLH	Quebec PEV
Appearance	Silver-Grey Metal	White Powder	Bro wn Po wde r	Clear Colourless Liquid	White Fibrous Glass	Colourless Solid
Odor	None	None	None	None to Acidic	None	None
Odor Threshold	N/A	N/A	N/A	Greater than 1 mg/m ³	N/A	N/A
Physical State	Solid	Solid	Solid	Liquid or Gas	Solid	Solid
pН	N/A	N/A	N/A	2 or lower	N/A	N/A
Melting point	327.4° C (621.3° F)	1070° C (1958° F)	290° C (554 ° F)	N/A	800° C (1472° F)	817° C (1502° F)
Freezing Point	N/A	N/A	N/A	11º C (51.8º F)	N/A	N/A
Boiling point	1740° C (3164° F)	1170° C (2134° F)	1070° C (1958 ° F)	114º C (237º F)	Unknown	6135° C (11,075° F)
Evaporation rate	N/A	N/A	N/A	> 1	Unknown	Unknown
Flammability	N/A	N/A	N/A	N/A		Unknown
Upper flammability explosive limit	N/A	N/A	N/A	Unknown	Unknown	Unknown
Lower flammability explosive limit	N/A	N/A	N/A	Unknown	Unknown	Unknown
Vapour pressure	1.3 mm Hg @ 970° C	Unknown	Unknown	0.00120 mm Hg @ 20° C	Unknown	Unknown
Vapour density	N/A	N/A	N/A	Unknown	Unknown	Unknown
Specific gravity	11.34	6.2	9.375	1.290 ±.010	2.6	1.020
Solubility in Water	None	0.43 mg /l @ 15° C (59° F)	None	100%	None	Infinitely Soluble
Partition coefficient: n- octanol/water	N/A	N/A	N/A	N/A	N/A	Unknown
Auto-ignition temperature	N/A	N/A	N/A	Unknown	N/A	Unknown
Decomposition temperature	N/A	N/A	N/A	Unknown	N/A	Unknown
Molecular Formula	Pb	PbSO4	PbO2	H2SO4	N/A	As

In the above table N/A represents Not Applicable

Section 10 – Stability & Reactivity

Stability:	The battery and its contents are stable.		
Conditions to avoid:	Overheating and overcharging as Sulfuric acid mist and hydrogen can be generated.		
Materials to avoid:	Strong alkaline materials, conductive metals, organic solvents, sparks and open flame.		
Hazardous decomposition of byproducts	: Hydrogen gas may be generated in an overcharge condition, in fire or at very high temperatures. In fire may emit Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydrogen (H), sulfur oxides as well as toxic fumes from decomposition of case material.		
Hazardous polymerization:	Hazardous polymerization will not occur.		

Section 11 – Toxicological Information

Non-spillable batteries are sealed and do not leak or vent gasses under normal conditions. Venting of sulfuric acid gas and hydrogen can occur under severe overcharge conditions. If battery is ruptured or damaged exposure to sulfuric acid electrolyte and lead can occur. Exposure is a significant risk during reclaim operations.

Information on Likely Routes of Exposure

Inhalation: In the event of exposure to contents of an open or damaged battery: dust/mist may irritate respiratory system. Difficulty in breathing. Frequent inhalation of dust over a long period of time increases the risk of developing lung diseases.

Skin contact: In the event of exposure to contents of an open or damaged battery: dust/mist may irritate skin.

Eye contact: In the event of exposure to contents of an open or damaged battery dust/mist may irritate the eyes.

Ingestion: In the event of exposure to contents of an open or damaged battery: may cause discomfort if swallowed.

Symptoms related to the physical, chemical and toxicological characteristics: In the event of exposure to contents of an open or damaged battery, dust may irritate the eyes and the respiratory system.

Acute Toxic Data

Components	CAS Number	OSHA Regulatory Status	LD_{50}	LC ₅₀
Lead (Pb)	7439-92-1	Hazardous	Unavailable	Unavailable
Lead Dioxide (PbO2)	1309-60-0	Hazardous	Unavailable	Unavailable
Lead Sulfate (PBSO4)	7446-14-2	Hazardous	Unavailable	Unavailable
Calcium (Ca)	7440-70-2	Hazardous	2000 mg/Kg (rat, oral)	Unavailable
Sulfuric Acid (H2SO4)	7664-93-9	Hazardous	2140 mg/Kg (rat, oral)	510 mg/m ³ / 2 hours (rat, inhalation)
Arsenic (As)	7440-38-2	Hazardous	763 mg/Kg (rat, oral)	Unavailable

See "Section 2 - Hazards Identification" for more information on human toxicity.

Subchronic Toxicity Data

See "Section 2 - Hazards Identification" for more information on human toxicity.

Carcinogenicity

Lead (Pb)

Several reports have been published indicating that certain lead compounds administered to animals in high doses are carcinogenic, primarily inducing renal tumors. Salts demonstrating carcinogenicity in animals are usually soluble salts. No studies have shown a relationship between lead exposure and cancer in lead workers. However, one study of lead-exposed workers demonstrated a statistically significant elevation in the standardized mortality ratio for gastric and lung cancer in battery plant workers.

Lead (Pb):	Lead has been deemed carcinogenic by the following agencies
ACGIH:	Classes Lead as an A3 Animal Carcinogen
OSHA:	Possible select carcinogen
IARC:	Group 2B carcinogen (Animal)
State of California:	Carcinogen; initial date 10/1/92
NTP:	Reasonably anticipated to be a human carcinogen.

Sulfuric Acid (H2SO4)

Many studies have reported more cancer of the larynx, and to a lesser extent the lungs, than expected, in a wide variety of processes involving the use of strong inorganic acids including sulfuric acid. Throughout these studies, sulfuric acid mists were the most common exposure, and in two studies, the number of cancers increased as exposure increased. Several of the studies had design weaknesses, such as exposure to other potentially carcinogenic chemicals at the same time. Nevertheless, some studies were well conducted and the overall trends indicate that occupational exposure to strong inorganic mists containing sulfuric acid is carcinogenic to humans.

Sulfuric Acid (H2SO4): IARC: NTP:	Sulfuric acid vapour has been deemed carcinogenic by the following agencies Group 1 carcinogen (Human) (Applies to vapour but not to liquid state). Known human carcinogen (Applies to vapour but not to liquid state).
Mutagencity	
Lead (Pb):	No Data Available
Sulfuric Acid (H2SO4):	There was a significantly higher number of sister chromatid exchanges, micronuclei and chromosomal aberrations in cultured lymphocytes (white blood cells) from workers exposed to sulfur dioxide in a sulfuric acidfactory. There was no correlation with length of service. No conclusions can be made based on these observations.
Teratogenicity	
Lead (Pb):	Lead penetrates the placental barrier and has caused fetal abnormalities in animals. Excessive exposure to lead during pregnancy has caused neurological disorders in infants.
Sulfuric Acid (H2SO4):	No human information is available. One animal study indicated that sulfuric acid is not teratogenic, even at maternally toxic doses.
Reproductive Effects Lead (Pb):	Reproductive effects from lead have been documented in animals of both sexes.
Leau (FD).	Reproductive enects normeau nave been documented in animals of both sexes.

In battery workmen with a mean exposure of 8.5 years to lead, there was an increased frequency of sperm abnormalities as compared to a control group.

Neurotoxicity

Lead (Pb):

Subtle neurological effects from lead have been demonstrated with relatively low blood levels of lead. The performance of lead workers on various neurological tests was mildly deduced when compared with a control group. Anxiety, depression, poor concentration, forgetfulness, mild reductions in motor and sensory nerve conduction velocities have been documented in lead-exposed workers. Sulfuric Acid (H2SO4): No human or animal information is available.

Irritancy of Product

Lead (Pb):	Lead dust may cause skin irritation.	
Sulfuric Acid (H2SO4):	Sulfuric acid can cause severe burns to eyes and skin.	

Sensitization (Potential Allergen)

Lead (Pb):	Lead and lead compounds are not known to be skin sensitizers.		
Sulfuric Acid (H2SO4):	Sulfuric acid can cause severe burns to eyes and skin.		
	There is no data available on sensitization.		

Potential for Accumulation

Lead (Pb):

Lead accumulates in the body throughout one's lifetime.

Sulfuric Acid (H2SO4):

Sulfuric acid is absorbed through mucous membranes, ultimately into the bloodstream. The sulfate anion becomes part of the pool of sulfate anions in the body and is excreted in the urine in combination with other chemicals in the body. It is unlikely to accumulate in the body.

Battery terminals contain lead. After contact with terminals, wash hands before eating, drinking, smoking, applying cosmetics or handling contact lenses.

Section 12 – Ecological Information

Lead and lead compounds can pose a threat if released into the environment. Lead is an extremely stable metal. While some corrosion may be expected in soil, generally an inert coat of insoluble salt will form and limit further corrosion. Lead particles will sink in water and stay in the sediment, however in fast moving water lead may be spread. Small amounts of lead in water can lead to accumulation in living organisms over time. Batteries in landfill sites have contributed to lead leaching into ground water.

Sulfuric acid is harmful to aquatic life even in very low concentrations. It may be dangerous if it enters water intakes. Aquatic toxicity for Bluegill (Lepomis macrochirus) in fresh water was 24.5 ppm / 24 hrs, which was lethal. LC50 for Flounder was 100 to 330 mg / 1 / 48 hrs.

Section 13 – Disposal Considerations

Waste Disposal Method:

Non-spillable batteries are recyclable. It is an offence to dispose of lead-acid batteries by any means other than recycling. Do not dispose of in regular household garbage. Contact UPS Battery Center Ltd. for information on disposal.

Ontario:

Must be recycled in an Ontario Ministry of the Environment approved facility, permitted to receive Ontario Waste Class 112.

United States:

U.S. law requires that chemical waste generators must determine whether a discarded material is classified as hazardous waste. Use U.S. EPA guidelines for the classification of hazardous waste listed in 40 CFR 261.3. Additionally, consult state and local hazardous waste regulation to ensure complete and accurate classification.

Hazardous Waste Class/Code:

Not applicable to finished product as manufactured for distribution into commerce. Batteries are considered hazardous goods (UN2800) when being transported for reclamation (recycling). US EPA hazardous waste code D002 (corrosivity) and D008 (lead) apply to spent batteries only.

Section 14 – Transport Information

United States

U.S. Department of Transportation (DOT): Non-spillable wet electric storage batteries are regulated by the U.S. DOT under the Hazardous Materials Regulations (HMR). Exemptions are made if certain criteria are met. UPS Battery Center batteries meet the test requirements for "nonspillable wet electric storage batteries", as provided in 49 CFR 173.159(d), and therefore are non-regulated by DOT, for surface transportation, when protected against short circuits and securely packaged. (These data refer to undamaged batteries). The outer packaging must be plainly and durably marked "NON-SPILLABLE".

This exemption does not apply to spent batteries being transported for reclamation (recycling). When shipping spent batteries the following applies:

Proper shipping name:	Batteries, wet, non-spillable	
Hazard Class/Division:	8	
Identification Number:	UN2800	
Packing Group:	111	
Label Required:	No (Class 8) label required	

Canada

Transport Canada:

Non-spillable wet electric storage batteries are regulated by Transport Canada under the Transportation of Dangerous Goods Act (TDG). Exemptions are made if certain criteria are met. UPS Battery Center Ltd. batteries meet the test requirements for "batteries, wet, non-spillable", as specified in Schedule 2 Special Provision #39 (2) of the TDG, and therefore are exempt and non-regulated by Transport Canada, for surface transportation, when protected against short circuits and securely packaged. (These data refer to undamaged batteries). The outer packaging must be plainly and durably marked "NON-SPILLABLE".

This exemption does not apply to spent batteries being transported for reclamation (recycling). When shipping spent batteries the following applies:

Proper shipping name:	Batteries, wet, non-spillable
Hazard Class/Division:	8
Identification Number:	UN2800
Packing Group:	III
Label Required:	No (Class 8) label required

International

IATA (International Air Transport Association):

UPS Battery Center Ltd. batteries are safe for air transport, as they have met the testing requirements put forth in Special Provision # A67 of the IATA Dangerous Goods List. No label required.

IMO (International Maritime Organization):

UPS Battery Center Ltd. batteries are safe for marine transport, as they have met the testing requirements put forth in Special Provision SP238 of the IMDG code. No label required.

Certificate of Testing documentation for the above exemptions and special provisions is available from UPS Battery Center Ltd. on request.

Section 15 – Regulatory Information

U.S. Federal Regulations

Supplier Notification:

TSCA (Toxic Substances Control Act)

The following ingredients are listed in the TSCA Registry as follows:

CAS# 7439-92-1 (lead), CAS# 1309-60-0 (lead dioxide), CAS# 7446-14-2 (lead sulfate), CAS# 7440-70-2 (calcium), CAS# 7440-31-5 (tin), CAS# 7664-93-2 (sulfuric acid), CAS# 7440-38-2 (arsenic).

RCRA (Resource Conservation and Recovery Act)

Spent lead-acid batteries are not regulated as hazardous waste when recycled. Spilled sulfuric acid is a characteristic hazardous waste; EPA hazardous waste number D002 (corrosivity). Exposed lead is a hazardous waste; EPA hazardous waste number D008 (lead).

CERCLA (Comprehensive Response Compensation, and Liability Act)

Reportable quantity (RQ) for spilled 100% sulfuric acid (CAS# 7664-93-2) under CERCLA is 1000 lbs. (454 Kg). State and local reportable quantities for spilled sulfuric acid may vary.

SARA Title III (Superfund Amendments and Reauthorization Act)

This product contains toxic chemicals that may be reportable under Section 313 Toxic Chemical Release Inventory (Form R) requirements. CAS numbers and % by weight information is provided in the table in Section 3 of this document.

EPCRA (Emergency Planning and Community Right to Know Act)

Sulfuric acid is listed "Extremely Hazardous Substance" under EPCRA with a Threshold Planning Quantity (TPQ) of 1000 lbs. (454 Kg).

- a) Section 302 notification is required if 1000 lbs (454 Kg) or more of sulfuric acid is present at one site. The average non-spillable battery contains less than 2 lbs. (0.9 Kg) of sulfuric acid.
- b) Section 312 Tier Two reporting is required for non-automotive batteries if sulfuric acid is present in quantities of 500 lbs. or more and / or if lead is present in quantities of 10,000 lbs. or more.

Clean Air Act (CAA):	This material does not contain any hazardous airpollutants. This material does not contain any Class 1 ozone depletors. This material does not contain any Class 2 ozone depletors.
Clean Water Act (CWA):	Sulfuric acid is listed as a Hazardous Substance under the CWA.

State Regulations

California Proposition 65

The following chemicals identified to exist in the finished product as distributed into commerce are known to the State of California to cause cancer, birth defects, or other reproductive harm: Arsenic, Sulfuric Acid and Lead. CAS numbers and % by weight information is provided in the table in Section 3 of this document.

California Proposition 65 Label

Warning: Battery, posts, terminals and related accessories contain lead, lead compounds and other chemicals known to the State of California to cause cancer or birth defects and other reproductive harm. Wash hands after handling.

California Consumer Product Volatile Organic Compound Emissions

This Product is not regulated as a Consumer Product for purposes of CARB/OTC VOC Regulations, as-sold for the intended purpose and into the Industrial /Commercial supply chain.

Right to Know Legislation

Sulfuric acid, lead and lead compounds, calcium, tin and arsenic can be found on the following state right to know lists: California, New Jersey, Florida, Pennsylvania, Minnesota, and Massachusetts.

Canadian Regulations

Canadian Domestic Substance List (DSL)

All ingredients remaining in the finished product as distributed into commerce are included on the Domestic Substances List.

WHMIS Classifications

Class E: Corrosive materials present at greater than 1%. This product has been classified in accordance with the hazard criteria of the Hazardous Products Regulations (HPR) and the SDS contains all of the information required by those regulations. Lead, lead dioxide, lead sulfate, calcium, tin, sulfuric acid and arsenic are listed on the DSL list and the Ingredient Disclosure List. CAS numbers and % by weight information is provided in the table in Section 3 of this document.

National Pollutant Release Inventory (NPRI) and Ontario Regulation127/01

This product contains the following chemicals subject to reporting requirements of Canada NPRI and/or Ontario Regulation 127/01: Lead, Sulfuric Acid.

CAS numbers and % by weight information is provided in the table in Section 3 of this document.

European Regulations

European Inventory of Existing Commercial Chemical Substances (EINECS)

All ingredients remaining in the finished product as distributed into commerce are exempt from, or included on, the European Inventory of Existing Commercial Chemical Substances.

European Communities (EC) Hazard Classification according to:

Dangerous Substances Directive 67/548/EEC and Dangerous Preparations Directive 1999/45/EC. **R-Phrases:** 35, 36, 38, 45, 51 **S-Phrases:** 2, 26, 30, 45

Classification, Labeling & Packaging (CLP) Regulation no.1272/2008 and Registration, Evaluation, Authorization and restriction of Chemicals (REACH) Regulation no.1907/2006. These products are manufactured articles and not subject to CLP and REACH registration requirements.

Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) UPS Battery Center Ltd. batteries are exempt from RoHS restrictions for lead content. Supporting information is available from UPS Battery Center Ltd. on request.

Section 16 – Other Information

This entire document has been revised to comply with the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) for SDS in order to maintain consistency throughout Canada (HPR & WHMIS), the United States (ANSI Z400.1-2004), Europe (Directive 91/155/EEC & CLP) and Japan (MITI Official Notice #1). Every effort has been made to ensure that this document meets all the requirements of these standards at the time of publication. (October 4, 2018).

Vendee and third persons assume the risk of injury proximately caused by the material if reasonable safety procedures are not followed as provided for in the SDS. Vendor shall not be liable for injury to vendee or third persons proximately caused by abnormal use of the material even if reasonable procedures are followed.

All persons using this product, all persons working in an area where this product is used, and all persons handling this product should be familiar with the contents of this SDS. This information should be effectively communicated to employees and all others who might come in contact with this product.

The information contained herein is based on data considered accurate as of the date hereof, however, no warranty is expressed or implied regarding the accuracy of these data or the results obtained from the use thereof.

Figure 20.

2) Mighty Max Battery ML18-12 Safety Data Sheet

Material Safety Data Sheet

1. PRODUCT AND COMPANY IDENTIFICATION

Valve Regulated Maintenance Free Lead-Acid Batteries:

Product Name

ML and YT Series Lead acid battery. Sealed Motorcycle Battery

Recommended Use

Supplier Address

Mighty Max Battery 3775 Park Avenue UNIT 3B Edison, NJ 08820 Phone:855- 378 - 7135

Sales@MightyMaxBattery.com

2. HAZARDS IDENTIFICATION

Emergency Overview

NOTE: Under normal conditions of battery use, internal components will not present a health hazard. The following information is provided for battery acid and lead exposure that may occur during battery production or container breakage or under extreme heat conditions such as fire.

In case of rupture:

Corrosive

The product causes burns of eyes, skin and mucous membranes

The produc	causes buills of eyes, skill and mucous m	empranes		
Appearance: No information avai	lable. Physical State: Solid.	Odor: Odorless		
	Potential Health Effects			
Principle Routes of Exposure	Skin contact.			
Acute Toxicity				
Eyes Skin	Corrosive to the eyes and may cause severe of Causes burns.	Corrosive to the eyes and may cause severe damage including blindness. Causes burns.		
Inhalation	Harmful by inhalation. Contact with moist mucous membranes of the respiratory system can cause caustic condition resulting in burns.			
Ingestion	Harmful if swallowed. Can burn mouth, throat, and stomach.			
Chronic Effects	Lead compounds may be absorbed by ingestion, by inhalation and through the skin. Lead may damage kidney function, the blood forming system and the reproductive system. Avoid repeated exposure.			
Main Symptoms	Severe exposures can lead to shock, circulatory collapse, and death Lead poisoning is characterized by a metallic taste in the mouth, loss of appetite indigestion, nausea, vomiting, constipation, sleep disturbances and overall weakness			
Aggravated Medical Conditions None known.				

Environment Hazard

See Section 12 for additional Ecological Information

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name	CAS-No	Weight %
Lead	7439-92-1	65~75
Sulfuric acid	7664-93-9	10~20
ABS resin	9003-56-9	~5
Tin	7440-31-5	<0.5
Calcium	7440-70-2	<0.1

4. FIRST AID MEASURES

General Advice	First aid is upon rupture of sealed battery. Immediate medical attention is required. Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Keep eye wide open while rinsing. Do not rub affected area.	
Eye Contact		
Skin Contact	Immediate medical attention is required. Wash off immediately with soap and plenty of water removing all contaminated clothes and shoes.	
Inhalation	Move to fresh air. Call a physician or Poison Control Center immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen.	
Ingestion	Immediate medical attention is required. Call a physician or Poison Control Center immediately. Do NOT induce vomiting. Drink plenty of water. Never give anything by mouth to an unconscious person. Remove from exposure, lie down.	
Notes to Physician	Treat symptomatically.	
Protection of First-aiders	Use personal protective equipment. Avoid contact with skin, eyes and clothing.	

5. FIRE-FIGHTING MEASURES

Flammable Properties Flash Point	Not flammable. Not determined.	
Suitable Extinguishing Media	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.	
Uniform Fire Code	Corrosive: Acid-Liquid	
Hazardous Combustion Products	Hazardous metal fumes and oxides.	
Explosion Data Sensitivity to Mechanical	No.	
Impact Sensitivity to Static Discharge	No.	
Specific Hazards Arising from the Chemical	The product causes burns of eyes, skin and mucous membranes. Thermal decomposition can lead to release of irritating gases and vapors. In the event of fire and/or explosion do not breathe fumes.	

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

<u>NFPA</u>	Health Hazard 3	Flammability 0	Stability 2	Physical and Chemical Hazards
-------------	-----------------	----------------	-------------	-------------------------------

6. ACCIDENTAL RELEASE MEASURES Use personal protective equipment. Do not touch damaged containers or spilled Personal Precautions material unless wearing appropriate protective clothing. Do not get in eyes, on skin, or on clothing. **Environmental Precautions** Refer to protective measures listed in Sections 7 and 8. Methods for Containment Prevent further leakage or spillage if safe to do so. Methods for Cleaning Up In case of rupture: Use personal protective equipment. Dam up. Soak up with inert absorbent material. Take up mechanically and collect in suitable container for disposal. Clean contaminated surface thoroughly. Other Information Refer to protective measures listed in Sections 7 and 8. 7. HANDLING AND STORAGE Handling Handle in accordance with good industrial hygiene and safety practice. Storage Keep containers tightly closed in a dry, cool and well-ventilated place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Exposure Guidelines

Chemical Name	ACGIH TLV	OSHA PEL	NIOSH IDLH
Lead 7439-92-1	TWA: 0.05 mg/m3	TWA: 50 μg/m3 Action Level: 30 μg/m3 Poison, See 29 CFR 1910.1025	IDLH: 100 mg/m3 TWA: 0.050 mg/m3
Sulfuric acid 7664-93-9	TWA: 0.2 mg/m3 thoracic fraction	TWA: 1 mg/m3 (vacated) TWA: 1 mg/m3	IDLH: 15 mg/m3 TWA: 1 mg/m3
Tin 7440-31-5	TWA: 2 mg/m3	TWA: 2 mg/m3 Sn except oxides (vacated) TWA: 2 mg/m3	IDLH: 100 mg/m3 TWA: 2 mg/m3

ACGIH TLV: American Conference of Governmental Industrial Hygienists - Threshold Limit Value.

OSHA PEL: Occupational Safety and Health Administration - Permissible Exposure Limits.

NIOSH IDLH: Immediately Dangerous to Life or Health.

 Other Exposure Guidelines
 Vacated limits revoked by the Court of Appeals decision in AFL-CIO v. OSHA, 965 F.2d 962 (11th Cir. , 1992).

 Engineering Measures
 Showers Eyewash stations Ventilation systems

 Personal Protective Equipment Eye/Face Protection Skin and Body Protection
 Tightly fitting safety goggles. Wear protective gloves/clothing.

Respiratory Protection

No protective equipment is needed under normal use conditions. If exposure limits are exceeded or irritation is experienced, ventilation and evacuation may be required.

Hygiene Measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance Odor Threshold pH	No information available No information available No information available	Odor Physical State	Odorless. Solid
Flash Point	No information available.	Auto-ignition Temperature Boiling	No information available No information
Decomposition Temperature Melting Point/Range	No information available No information available	Point/Range	available
Flammability Limits in Air	No information available	Explosion Limits	No information available No information
Water Solubility Evaporation Rate	Immiscible in water No information available	Solubility Vapor Pressure Partition	available No data available
Vapor Density	No data available	Coefficient: noctanol/water	

10. STABILITY AND REACTIVITY

Stability Incompatible Products Conditions to Avoid	Stable under recommended storage conditions. Incompatible with strong acids and bases. Incompatible with oxidizing agents. Exposure to air or moisture over prolonged periods.
Hazardous Decomposition Products	Thermal decomposition can lead to release of toxic/corrosive gases and vapors
Hazardous Polymerization	Hazardous polymerization does not occur.

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Product Information	Product does not present an acute toxicity hazard based on known or supplied information.
Irritation	Causes severe irritation and or burns

Component Information

Chemical Name	LD50 Oral	LD50 Dermal	LC50 Inhalation
Sulfuric acid	= 2140 mg/kg (Rat)	-	= 510 mg/m3(Rat) 2 h

Chronic Toxicity

Chronic Toxicity

Lead compounds may be absorbed by ingestion, by inhalation and through the skin. Lead may damage kidney function, the blood forming system and the reproductive system. Avoid repeated exposure.

Carcinogenicity

The table below indicates whether each agency has listed any ingredient as a carcinogen.

Chemical Name	ACGIH	IARC	NTP	OSHA
Lead	A3	Group 2A	Reasonably Anticipated	Х
Sulfuric acid	A2	Group 1	Known	Х
ABS resin		Group 3		

ACGIH: (American Conference of Governmental Industrial Hygienists) A2 - Suspected Human Carcinogen A3 - Animal Carcinogen IARC: (International Agency for Research on Cancer) Group 1 - Carcinogenic to Humans Group 2A - Probably Carcinogenic to Humans MTP: (National Toxicity Program) Known - Known Carcinogen Reasonably Anticipated - Reasonably Anticipated to be a Human Carcinogen OSHA: (Occupational Safety & Health Administration) X - Present

Reproductive Toxicity	Product is or contains a chemical which is a known or suspected reproductive hazard. Contains ingredients that have suspected developmental hazards. Inorganic
Developmental Toxicity	lead compounds can cause developmental damage.
Target Organ Effects	None known.

12. ECOLOGICAL INFORMATION

Ecotoxicity

The environmental impact of this product has not been fully investigated.

Chemical	Toxicity		Toxicity to	Daphnia Magna
Name	to Algae	Toxicity to Fish	Microorganisms	(Water Flea)
Lead		LC50: 0.44 mg/L (96 h semi-static) Cyprinus carpio LC50: 1.17 mg/L (96 h flow-through) Oncorhynchus mykiss LC50: 1.32 mg/L (96 h static) Oncorhynchus mykiss		EC50: 600 µg/L (48 h) water flea
Sulfuric acid		LC50: > 500 mg/L (96 h static) Brachydanio rerio		EC50: 29 mg/L (24 h) Daphnia magna

13. DISPOSAL CONSIDERATIONS

Waste Disposal Methods	This material, as supplied, is a hazardous waste according to federal regulations (40 CFR 261). Should not be released into the environment.
Contaminated Packaging	Do not re-use empty containers.
US EPA Waste Number	D002 D008

Chemical Name	RCRA	RCRA - Basis for Listing	RCRA - D Series Wastes	RCRA - U Series Wastes
Lead - 7439-92-1	(hazardous constituent - no waste number)	Included in waste streams: F035, F037, F038, F039, K002, K003, K005, K046, K048, K049, K051, K052, K061, K062, K064, K065, K066, K069, K086, K100, K176	= 5.0 mg/L regulatory level	

California Hazardous Waste Codes 792

This product contains one or more substances that are listed with the State of California as a hazardous waste.

Chemical Name	California EHW	California Carc	California Hazardous Waste	California Waste - Part 2
Lead			Тохіс	TCLP(forCA Toxicity): 5.0 mg/L
Sulfuric acid			Toxic Corrosive	
Calcium	Ignitable Reactive			

14. TRANSPORT INFORMATION

Note:		Exempt from hazardous materials regulations per 49CFR173.159 (d).
DOT	Description	NOT REGULATED NON-SPILLABLE BATTERY
TDG	Description	Not regulated NON-SPILLABLE BATTERY
MEX	Description	Not regulated NON-SPILLABLE BATTERY
ICAO Description		Not regulated NON-SPILLABLE BATTERY
ΙΑΤΑ	Description	Not regulated NON-SPILLABLE BATTERY
IMDG/IMO Description		Not regulated NON-SPILLABLE BATTERY

15. REGULATORY INFORMATION

International Inventories

TSCA	Complies
DSL	Not determined

U.S. Federal Regulations

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product contains a chemical or chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372:

Chemical Name	CAS-No	Weight %	SARA 313 - Threshold Values %
Lead	7439-92-1	65~75	0.1
Sulfuric acid	7664-93-9	10~20	1.0

SARA 311/312 Hazard Categories Health Hazard	Acute	Yes
Chronic Health Hazard		Yes
Fire Hazard		No
Sudden Release of Pressure Hazard		No
Reactive Hazard		No

Clean Water Act

This product contains the following substances which are regulated pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42):

Chemical Name	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Lead		X	X	
Sulfuric acid	1000 lb			X

<u>Clean Air Act, Section 112 Hazardous Air Pollutants (HAPs) (see 40 CFR 61)</u> This product contains the following substances which are listed hazardous air pollutants (HAPS) under Section 112 of the Clean Air Act:

Chemical Name	CAS-No	Weight %	HAPS data	VOC Chemicals	Class 1 Ozone Depletors	Class 2 Ozone Depletors
Lead	7439-92-1	65~75				

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302):

Chemical Name	Hazardous Substances RQs	Extremely Hazardous Substances RQs
Lead	10 lb	
Sulfuric acid	1000 lb	1000 lb

U.S. State Regulations

California Proposition 65 This product contains the following Proposition 65 chemicals:

Chemical Name	CAS-No	California Prop. 65
Lead	7439-92-1	Carcinogen Developmental Female Reproductive Male Reproductive
Sulfuric acid	7664-93-9	Carcinogen

U.S. State Right-to-Know Regulations

Chemical Name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Lead	Х	Х	Х	Х	Х
Tin	Х	Х	Х		
Calcium	Х	Х	Х		
Sulfuric acid	Х	X	Х	Х	Х

International Regulations

Mexico - Grade

Minimum risk, Grade 0

Chemical Name	Carcinogen Status	Exposure Limits
Lead	A3	Mexico: TWA= 0.15 mg/m3
Tin		Mexico: TWA 2 mg/m3 Mexico: STEL 4 mg/m3
Sulfuric acid	A2	Mexico: TWA 1 mg/m3

Canada

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.

WHMIS Hazard Class

D2A Very toxic materials E Corrosive material

Chemical Name	NPRI
Lead	Х
Sulfuric acid	Х

Legend

NPRI - National Pollutant Release Inventory

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Material Safety Data Sheet

16. Issuing Date: OCT. 1st, 2016

Appendix B. Flotation Calculations

Component	Weight (lbs)
Solar Array	86
Batteries	100
Drivetrain (Outboard, Motor, Cooling)	63
Hull	225
Control Electronics	130
TOTAL:	504
TOTAL x 120% for Rule 7.13.4	605

Component Weights

The hull displacement can be approximated by creating an line of best fit that follows the specifications that come from our design. Salt Boatworks provides two datapoints, 2 inches at 250 pounds and 5 inches at 850 pounds. We combined these two and added one of zero inches at zero pounds to get a fit curve of our designed displacement. This can be seen in the figure below, with our summed weights with and without the driver.

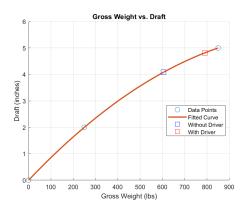


Figure 18: Gross Weight vs. Draft

The necessary displacement was calculated to float our boat by calculating the weight of our hull and components, then applied a twenty percent increase as a factor of safety. Our components with the factor of safety weigh 605 pounds. To float these, our hull must be able to displace the appropriate amount of water, and also have sufficient foam onboard to keep that volume of water out.

Displacement Needed = (Weight Sum)/(Density of Water)

9. 6953 $ft^3 = 604.8 lbs / 62.38 lbs / ft^3$

The following equation can be used to find the volume of foam needed to prevent sinking in the event of catastrophic water ingress.

Foam Volume = (Weight Sum)/(Density of Water - Density of Foam)

$$10.0164 ft^{3} = (604.8 lbs)/(62.38 lbs/ft^{3} - 2 lbs/ft^{3})$$

Our hull displacement is overestimated to account for a wide margin of error in our weights across the board due to potentially faulty scales and part variance.

Our boat is filled in most of its bulkheads with expanding foam for flotation purposes. We have approximately 11 cubic feet of foam inside our boat, and each cubic foot can maintain floatation for 60.38 pounds outside of it's own weight. This exceeds the minimum requirements for our boat as outlined in rule 7.13.4.

The code of all calculations is on the following pages.

Table of Contents

UD Solar Splash Floatation Calculations	1
Weights	1
Calculating Bouyant Force & Displacement	2
Calculating Foam Volume & Weight	2
Calculating Draft as a Function of Gross Weight	3

UD Solar Splash Floatation Calculations

03/04/2025 Michael J. Wolf

clear clc close all

g = 386.1; % in/s2

Weights

```
driver = 154; %lbs
pkPanel = 43;
panelTotal = 2*pkPanel;
controlPanelWeight = 3;
speedControllerWeight = 4;
wiringWeight = 20;
chargeControllerWeight = 3;
batteriesWeight = 100;
controlElectronicsTotal = controlPanelWeight+speedControllerWeight+...
    wiringWeight+chargeControllerWeight+batteriesWeight;
hull = 225; %lbs
motorWeight = 12;
radiatorWeight = 1;
pumpWeight = 2;
outboardWeight = 37; % Includes Prop
coolantWeight = 11;
drivetrainTotal = motorWeight+radiatorWeight+pumpWeight+...
    outboardWeight+coolantWeight;
totalWeightLoaded = driver+controlElectronicsTotal+hull+drivetrainTotal...
    +panelTotal; %lbs
totalWeightUnloaded = totalWeightLoaded-driver;
rhoFoam = 2/(12^3); %1b/in3
```

Calculating Bouyant Force & Displacement

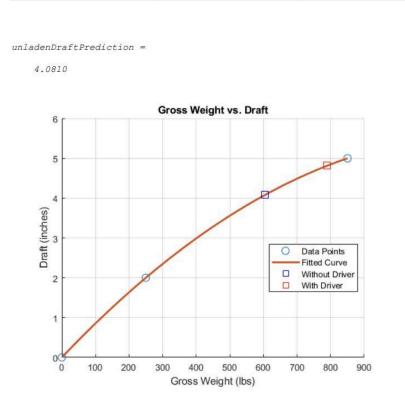
```
rhoWater = 0.0361; % Freshwater = 0.0361, Saltwater = 0.0370;
rhoWaterFt = rhoWater*(12^3);
forceSafetyLoaded = 1.2*totalWeightLoaded; %lbs
forceSafetyUnloaded = 1.2*(totalWeightUnloaded);
vDisplacementUnloaded = forceSafetyUnloaded/(rhoWater)
vDisplacementUnloadedFt = vDisplacementUnloaded/(12^3)
vDisplacementLoaded = forceSafetyLoaded/(rhoWater)
vDisplacementLoadedFt = vDisplacementLoaded/(12^3)
vDisplacementUnloaded =
   1.6753e+04
vDisplacementUnloadedFt =
    9.6953
vDisplacementLoaded =
   2.1873e+04
vDisplacementLoadedFt =
   12.6577
```

Calculating Foam Volume & Weight

```
rhoFloat = rhoWater-rhoFoam;
rhoFloatFt = rhoFloat*(12^3);
vFoam = forceSafetyUnloaded/rhoFloat %in3
vFoamFt = vFoam/(12^3) %ft3
foamWeight = vFoam*rhoFoam %lbs
vFoam =
    1.7308e+04
vFoamFt =
```

10.0164

foamWeight =


20.0329

Calculating Draft as a Function of Gross Weight

Define discrete data points

```
weights = [0, 250, 850]; % Loaded weights in lbs
drafts = [0, 2, 5]; % Draft in inches
% Fit a cubic spline to the data
fitObj = fit(weights', drafts', 'cubicspline');
% Generate data for plotting the fitted curve
weights fit = linspace(min(weights), max(weights), 100); % Fine-grained
 weights
drafts fit = feval(fitObj, weights fit); % Evaluate the fit
% Generate draft predictions
ladenDraftPrediction = feval(fitObj, forceSafetyLoaded)
unladenDraftPrediction = feval(fitObj, forceSafetyUnloaded)
% Plot the data and the fitted curve
figure;
hold on;
plot(weights, drafts, 'o', 'MarkerSize', 8, 'DisplayName', 'Data Points'); %
Original points
plot (weights fit, drafts fit, '-', 'LineWidth', 2, 'DisplayName', 'Fitted
 Curve'); % Fitted curve
plot(forceSafetyUnloaded, unladenDraftPrediction, 's', 'MarkerSize',
 10, 'DisplayName', 'Without Driver', Color='b'); % Draft Prediction without
 Driver
plot(forceSafetyLoaded, ladenDraftPrediction, 's', 'MarkerSize',
 10, 'DisplayName', 'With Driver', Color='r'); % Draft Prediction with Driver
hold off;
% Add labels, title, and legend
xlabel('Gross Weight (lbs)');
ylabel('Draft (inches)');
title('Gross Weight vs. Draft');
legend('Location', 'best');
grid on;
ladenDraftPrediction =
```

4.8130

Published with MATLAB® R2023a

Appendix C. Proof of Insurance

Ĩ				ICATE OF LIA				-	06/2	(MM/DD/YYYY 2/2023
CE BE RE	HIS CERTIFICATE IS ISSUED AS A ERTIFICATE DOES NOT AFFIRMAT ELOW. THIS CERTIFICATE OF INS ERRESENTATIVE OR PRODUCER, A IPORTANT: If the certificate holder	IVEL SURA ND T is an		R NEGATIVELY AMEND, DOES NOT CONSTITU ERTIFICATE HOLDER. DITIONAL INSURED, the	, EXTEND TE A CO policy(ies	OR ALTI	ER THE CO BETWEEN T	VERAGE AFFORDED I 'HE ISSUING INSURER	BY TH 2(S), A 15 or b	E POLICIE UTHORIZE
	SUBROGATION IS WAIVED, subject is certificate does not confer rights							require an endorsemen	t.As	tatement o
PROF	IS CERTIFICATE DOES NOT CONTER FIGHTS I	o the	e cert	incate holder in lieu of s	CONTACT NAME:	rsement(s).			
	DUCER Marsh USA LLC				PHONE			FAX		
	1717 Arch Street: Philadelphia, PA 19103-2797				PHONE (A/C, No, E E-MAIL ADDRESS:	xt):		(A/C, No)		
					ribbite00.	INS	URER(S) AFFOR	RDING COVERAGE		NAIC
	03088283-Dayto-GUP-23-24				INSURER A			ner Ed VT RRRG		11980
INSU	RED University of Dayton:: Attn: Robin Oldfield::				INSURER E	з:N/А				N/A
					INSURER O	D:				
	300 College Parki St. Mary's Hall, Rm 301i				INSURER D	D:				
	Dayton, OH 45469-1642				INSURER E					
001	/FRAGE0 0FF	TIEL	0 A T		INSURER F					
	VERAGES CER HIS IS TO CERTIFY THAT THE POLICIES			E NUMBER:		7008898-03		REVISION NUMBER:		
INI CE	CLUSIONS AND CONDITIONS OF SUCH	EQUIF PERT POLI	REME FAIN, CIES.	NT, TERM OR CONDITION THE INSURANCE AFFORD LIMITS SHOWN MAY HAVE	OF ANY O DED BY TH BEEN REI	CONTRACT	OR OTHER S DESCRIBEI PAID CLAIMS	DOCUMENT WITH RESPE	CT TO	WHICH TH
INSR LTR	TYPE OF INSURANCE	ADDL INSD	SUBR	POLICY NUMBER			POLICY EXP (MM/DD/YYYY)	LIMI	TS	
A	X COMMERCIAL GENERAL LIABILITY			PCHE2023-18	07	/01/2023	07/01/2024	EACH OCCURRENCE	\$	5,00
	CLAIMS-MADE X OCCUR							PREMISES (Ea occurrence)	\$	5,0
								MED EXP (Any one person)	\$	5.00
-								PERSONAL & ADV INJURY	\$	10,00
	GEN'L AGGREGATE LIMIT APPLIES PER: X POLICY PRO- JECT LOC							GENERAL AGGREGATE PRODUCTS - COMP/OP AGG	s s	5,00
ŀ	OTHER:							PRODUCTS - COMP/OP AGG	\$	0,00
	AUTOMOBILE LIABILITY							COMBINED SINGLE LIMIT (Ea accident)	\$	
ſ	ANY AUTO							BODILY INJURY (Per person)	\$	
	OWNED SCHEDULED AUTOS							BODILY INJURY (Per accident)	\$	
[HIRED AUTOS ONLY AUTOS ONLY							PROPERTY DAMAGE (Per accident)	\$	
									\$	
	UMBRELLA LIAB OCCUR							EACH OCCURRENCE	\$	
	EXCESS LIAB CLAIMS-MADE							AGGREGATE	\$	
	DED RETENTION \$ WORKERS COMPENSATION							PER OTH-	\$	
	AND EMPLOYERS' LIABILITY							STATUTE ER		
	ANYPROPRIETOR/PARTNER/EXECUTIVE OFFICER/MEMBEREXCLUDED?	N/A						E.L. EACH ACCIDENT E.L. DISEASE - EA EMPLOYER	\$ 5	
	If yes, describe under DESCRIPTION OF OPERATIONS below							E.L. DISEASE - POLICY LIMIT	\$	
	DESCRIPTION OF OPERATIONS DROW							E.E. DISEASE - FOLIOT LIMIT	-	
DESC	RIPTION OF OPERATIONS / LOCATIONS / VEHIC	LES (/	ACORE	9 101, Additional Remarks Schedu	ule, may be at	tached if more	e space is requir	ed)		
CEF	RTIFICATE HOLDER University of Dayton Proof of Insurance						THE ABOVE D	ESCRIBED POLICIES BE (ANCEL	
University of Dayton Proof of Insurance. 300 College Parki Dayton, OH 45469-1642					SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFO THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED ACCORDANCE WITH THE POLICY PROVISIONS.					
					AUTHORIZ	ED REPRESE	NTATIVE			
					AUTHORIZ	ED REPRESE		Marsh USA		0

Appendix D. Team Roster

Name	Year	Major	Responsibilities
Kaitlin Niebauer	Sophomore	BEE Electrical Engineering	President
Michael Wolf	Senior	BME Mechanical Engineering	Interim President , data acquisition system design
Ellie Opalek	Sophomore	BME Mechanical Engineering	Treasurer
Brian Piper	Senior	BME Mechanical Engineering	Motor Team Lead, outboard design & manufacturing
Sydney Guerin	Sophomore	BME Mechanical Engineering	Hull Team Lead
Jack Mueller	Sophomore	BCpE Computer Engineering	Electrical Team Lead
Cory Howley	Senior	BChE Chemical Engineering	Technical Report Director , propeller design & manufacturing
Lucy Westbrook	Sophomore	BSBA Marketing	Business Team Lead
Jack Erick	Senior	BME Mechanical Engineering	Electronics design
Elliot Stasek	Junior	BEE Electrical Engineering	Hull construction
Nick Yeoman	Senior	BME Mechanical Engineering	Hull construction
Lucas Cosentino	Junior	BME Mechanical Engineering	Outboard design
Courtney Prevost	Freshman	BME Mechanical Engineering	Steering system design

Name	Year	Major	Responsibilities
Erin Fox	Sophomore	BEE & BCpE Electrical and Computer Engineering	Electrical Enclosure Selection, Electrical Assembly
Brennen Geiger	Sophomore	BME Mechanical Engineering	Outboard Fairing Design
Rachel Guinee	Sophomore	Electrial Engineering	Electrical Enclosure Selection, Electrical Assembly
Molly Eure	Sophomore	BME Mechanical Engineering	General Hull Design and Construction
Brock Smith	Senior	BME Mechanical Engineering	General Hull Design and Construction

Appendix E. Sponsors

Company	Product Obtained	Contact	Contact Email
Ohio Space Grant Consortium (OSGC), Student-Innovative-C reative-Hands-on Project (SICHOP)	Grant	Rydge Mulford	rmulford1@udayton.edu
DHX Motors	<i>PEREGRiNE</i> P20 motor	Cameron Andersen, Su Mayor	cameron.andersen@dhxmachi nes.com, su.mayor@dhxmachines.com
Home Depot	Monetary Donation	N/A	N/A
Inmotion Technologies	ACS Gen 7 motor controller	Kaylan Sheally	kaylan.sheally@evs-inmotion. com ryan.kleiman@evs-inmotion.c om
Kokosing	Monetary Donation	Jared Cebulski	jcebulski@kokosing.biz
Salt Boatworks	Flats River Skiff 14 - Microskiff Plans	Adam Parchman	adam@saltboatworks.com
UDRI	2x Wheel Chocks	Eric Troidl, Jake Browning	eric.troidl@udri.udayton.edu, browningj3@udayton.edu
UPS Batteries	3x UPS TLV12500F11 Batteries	Anton K.	anton@upsbatterycenter.com

Appendix F. 2024 Solar Splash Performance Analysis

Event	Heat	Time/Laps	Notes
	1	124.86	
Sprint	2	162.65	Propeller fastening key skipping
	3	131.82	
Endurance	1	18	Fastening issue on one charge controller causing uneven charging and premature battery discharge
Endurance	2	12	Key dislodged from propeller fastening, propeller fell off in the lake and was not recoverable
	1	135.67	
Slalom	2	DNF	FDM and fiberglass-reinforced propeller (replacing prop lost in Endurance 2) broke during event

Appendix G. Solar Panel Layout Design Report

Solar Splash Solar Array Technical Report

12/11/2024

Group Members:

John Rypinski

Harper Mitchell

Index:

Figures

- Figure 1: Option 1 Array Design (page 3)

- Figure 2: Option 2 Array Design (page 5)

- Figure 3: Wiring Schematic for panels in option 2 (page 6)

Tables

- Table 1: Option 1 Cost Break Down and Materials (page 4) - Table 2: Current Solar splash panels (page 5)

- Table 3: OPtion 2 Cost break down and materials

- Table 4: Decision Matrix (page 7)

Back Ground:

The Solar Splash Club is a group of students who work together to design and build a boat that runs completely on solar power. They spend weeks and months planning, designing, and creating parts to make their boat better and more efficient. After finishing the boat, they take it to competitions where we race against teams from other schools and compete in different events.

Deliverables:

The Solar Splash team has tasked us with designing a solar array that is both efficient and compact enough to fit on their boat. We need to ensure the design maximizes energy output while staying within the space limitations of the boat. At the same time, we must carefully follow the rules and regulations of the Solar Splash competition to ensure our design meets all the required standards.

Design Requirements:

- Boat specifications
- 13'9" length
- 49 ½" in width
- Driver sits at 7' from the back of the boat
- Charge controller
- Max amps 35 amps
- Max Voltage 150V
- Batteries three 12 volt batteries

Option 1: New Solar Panels

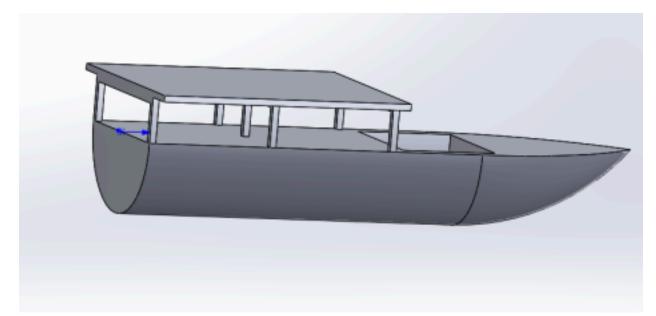


Figure 1: Option 1 Array Design

Option 1 will utilize newer solar panels that will have to be purchased from a third party supplier. Only 2 new panels will have to be purchased for this design as well as 80/20 and water proof wiring. The new panels are 360 watt panels with 120 cells. The panels will be connected in series

to produce a total voltage of 68 volts and 10.62 amps. Which will pair well with the newly bought charge controller. The total weight of the panels will be 83 lb with the dimensions of 81.88" by 69.1". With these dimensions the panels will have an overhang of 9.8" on each side of the vessel. To deal with this overhang we recommend using 80/20 to raise the panels 14" from the top of the boat, this also follows the rules of competition which is 1.5 meters above the boat. Having the panels raised will also eliminate some of the worries of the driver casting a shadow over the panels which will limit the output of the panels.

Cost Break Down and Materials:

Quantity	Item	Price Per Unit
2	Panasonic 360W Solar Panel 120 Cell EverVolt EVPV360PK	\$351.57
3	T-Slotted Framing, Single Four Slot Rail, Silver, 1-1/2" SQ., Hollow, 4" Long	\$5.65
7	T-Slotted Framing, Single Four Slot Rail, Silver, 1-1/2" SQ., Hollow, 2" Long	\$ 4.41
16	Silver Corner Bracket, 1.5" Long for 1.5" High Rail T-Slotted Framing	\$8.80
1	25 ft. 12/2 Gray Solid CerroMax Copper UF-B Cable with Ground Wire	\$59.4
	Total Price	\$951.16

Table 1: Option 1 Cost Break Down and Materials

Option 2: Reusing Current Solar panels

Panel #	Width [inch]	Height [inch]	Wattage [W]	Used in Last Years Comp.
1	32	52 1/2	160	~
2	32	52 ½	160	~
3	21	41 %	100	~
4	21 1/4	47	100	~
5	34 %	51 %	200	~
6	32 1/2	52 ½	160	×

Table 2: Solar Splash's current panels

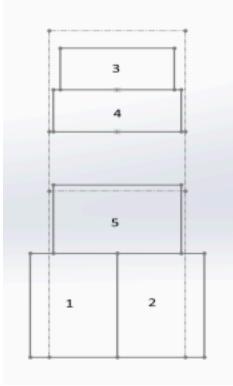


Figure 2: Configuration of current panels

Option 2 uses the newly purchased charge controller and the panels that the team currently owns. The challenge is maxing the panels Voltages at max power as if they are not close to each other it could lead to inefficiencies or damage to the panel with a smaller voltage. In figure 3 below it is shown how to wire the panels to ensure that this will not be a factor while also optimizing the voltage output of all the panels combined. Panels one and two have Vmps of 64.6 V, panel 3 20.4 V, panel 4 18.9V, and panel 5 55.8V. Panels 1 and 3, as well as 2 and 4 can be wired in series then each of those sub circuits would be wired in parallel. Finally panel five could be wired in series to give a final output of 139.3 V. This way of wiring eliminates the concern of damaging the panels while also maximizing the voltage output.

Wiring Diagram For Option 2:

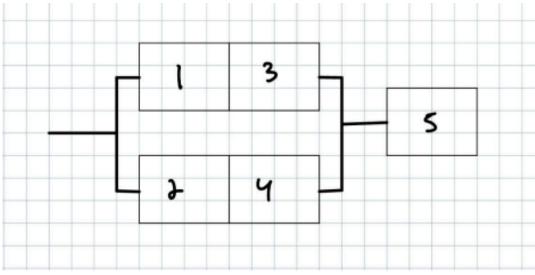


Figure 3: Wiring Diagram for option 2

Cost Break Down and Materials:

Quantity	Item	Price Per Unit
6	T-Slotted Framing, Single Four Slot Rail, Silver, 1-1/2" SQ., Hollow, 4" Long	\$5.65
11	T-Slotted Framing, Single Four Slot Rail, Silver, 1-1/2" SQ., Hollow, 2" Long	\$ 4.41
22	Silver Corner Bracket, 1.5" Long for 1.5" High Rail T-Slotted Framing	\$8.80
2	25 ft. 12/2 Gray Solid CerroMax Copper UF-B Cable with Ground Wire Total Price	\$59.4 \$394.81

Decision Matrix:

Table 4: Decision Matrix

Safty	Out put	Cost	Rules	socore	Options
10	7	6	8.5		
100	70	18	85	273	Option 1
55	70	24	85	234	option 2

Conclusion and Recommendation:

In conclusion, we believe that option one is the superior choice, even though it comes at a higher cost of approximately \$556.35. The simplified wiring design, with panels connected only in series, makes the solar array significantly more user-friendly and easier to troubleshoot during

competition, saving valuable time and effort. Additionally, the newer solar panels in option one offer better performance and efficiency compared to the outdated panels in option two. Option one also reduces surface area coverage while maintaining the same wattage output, minimizing interference for the driver entering and exiting the boat. This improvement enhances both convenience and safety, making option one a more reliable solution. Furthermore, investing in modern technology aligns with long-term sustainability goals and provides a competitive edge. While option two could work for this application, we strongly recommend option one as the most practical, efficient, and forward-thinking choice.

Appendix:

[1]- Link to solar panels for option 1

https://a1solarstore.com/panasonic-360w-solar-panel-120-cell-evervolt-evpv360pk.html?utm_so urce=google&utm_medium=cpc&utm_campaign=Only_Clients_creativespack1_new20241016 &utm_content=top_keywords&utm_term=&gad_source=1&gclid=Cj0KCQiAu8W6BhC-ARIsA CEQoDAhEZBRKiDyL6G2QzL-1mQKhH4MT5tp_0UiDZ2yhSM6lAKk5lIzxjEaAoz_EALw_ wcB

Appendix H: Monitored Motor and Charge Controller Parameters

Power Element	Controller Module	Data Acquisition Element	Value	Description
			System Status	General status word providing system status information.
			Field Weakening Control Status	Status of the field weakening control
			Analog 1 Value	Value of the first analog input.
			Digital In Status	Status of any digital inputs (on/off or fault conditions).
			n _{ref}	Motor speed reference value
			V_{max}	Peak allowable voltage
	Motor	Raspberry	I _{max}	Peak allowable current
Motor	Controller	Pi 1	V _{DC}	Inverter bus DC voltage
			I _{DC}	Inverter bus current
			T _{motor}	Motor Temperature
			T _{inverter}	Inverter temperature
			I _{directaxis}	Direct axis (d-axis) current component
			$\theta_{\rm V}$	Voltage waveform angle
			n	Motor rotational speed
			I _{RMS}	Root mean square of motor current
			$\mathscr{T}_{\mathrm{real}}$	Torque applied to motor
			$\mathscr{T}_{\mathrm{apparent}}$	Torque delivered by motor
			V_{PV}	Solar voltage
			I_{PV}	Solar current
Solar Array	Charge	Raspberry	Battery Status	Battery charging status (bulk, absorption, float)
and Batteries	•	Pi 2	V_{bat}	Battery voltage
			I _{bat}	Battery current
			T _{controller}	Charge controller temperature
			T _{bat}	Battery temperature

Appendix I: Funding Sources

Table X: UDSS sources of funding for the 2024-2025 school year

Funding Source	Amount
UD SGA Funding	\$1,540.00
SICHOP Grant	\$5,000.00
Kokosing Funding	\$500.00
UD Fund Match	\$6,250.00
2023-2024 Funds	\$243.57